operator algebraic properties for free wreath products by
play

Operator algebraic properties for free wreath products by quantum - PowerPoint PPT Presentation

Fusion rules for free wreath products Operator algebraic properties for free wreath products by quantum permutation groups -Conf erence du GDRE Noncommutative Geometry and Applications- Fran cois Lemeux (part. joint work with Pierre


  1. Fusion rules for free wreath products Operator algebraic properties for free wreath products by quantum permutation groups -Conf´ erence du GDRE “Noncommutative Geometry and Applications”- Fran¸ cois Lemeux (part. joint work with Pierre Tarrago) Universit´ e de Franche-Comt´ e francois.lemeux@univ-fcomte.fr June 2014, 19th - Villa Mondragone

  2. Fusion rules for free wreath products Sommaire Examples of CQG 1 Motivations 2 Fusion rules for quantum reflection groups Operator algebraic properties for CQG Fusion rules for the free wreath products � Γ ≀ ∗ S + 3 N Operator algebraic properties for � Γ ≀ ∗ S + 4 N Work in progress 5

  3. Fusion rules for free wreath products Examples of CQG Contents Examples of CQG 1 Motivations 2 Fusion rules for quantum reflection groups Operator algebraic properties for CQG Fusion rules for the free wreath products � Γ ≀ ∗ S + 3 N Operator algebraic properties for � Γ ≀ ∗ S + 4 N Work in progress 5

  4. Fusion rules for free wreath products Examples of CQG Definition (Woronowicz 80’) G = ( C ( G ) , ∆) GQC : C ( G ) Woronowicz C ∗ -algebra ; C ( G ) unital, ∆ : C ( G ) → C ( G ) ⊗ min C ( G ) s.t. 1 (∆ ⊗ id )∆ = ( id ⊗ ∆)∆ , 2 { ∆( a )( b ⊗ 1) : a , b ∈ C ( G ) } et { ∆( a )(1 ⊗ b ) : a , b ∈ C ( G ) } lin. dense in C ( G ) ⊗ C ( G ) . Peter-Weyl theory : Corep. u ∈ M N ( C ( G )) ≃ M N ( C ) ⊗ C ( G ), ∆( u ij ) = � N k =1 u ik ⊗ u kj . • Hom( u ; v ) = { T ∈ M n v , n u ( C ) : v ( T ⊗ 1) = ( T ⊗ 1) u } , • u ∼ v , ∃ T invertible T ∈ Hom( u ; v ), • u is irreducible if Hom( u ; u ) = C id. Theorem (Woronowicz) Let G = ( C ( G ) , ∆) be a GQC. The corepresentations of C ( G ) decompose as direct sums of irreducibles.

  5. Fusion rules for free wreath products Examples of CQG We consider the unital C ∗ -algebra defined by generators and relations: C ∗ com − � s ij : 1 ≤ i , j ≤ N : ( s ij ) magic unitary � ≃ C ( S N ) s ij �→ ( σ ∈ S N ⊂ M N ( C ) �→ σ ij ) . Magic unitary: ( s ij ) unitary matrix whose entries are projections which sum up to 1 on each row and column. Removing the commutativity: N ) := C ∗ − � v ij : 1 ≤ i , j ≤ N : ( v ij ) magic unitary � , C ( S + one obtains a new C ∗ -algebra for N ≥ 4. We have the coproduct on C ( S + N ): N � ∆ : C ( S + N ) → C ( S + N ) ⊗ C ( S + N ) , ∆( v ij ) = v ik ⊗ v kj . k =1 S + N = ( C ( S + N ) , ∆) is the quantum permutation group (Wang 98).

  6. Fusion rules for free wreath products Examples of CQG We denote by NC ( k , l ) the set of non-crossing partitions on k + l points:   · · · ·     p = P non-crossing diagram . P     · · · Theorem (Banica 99) N ( v ⊗ k ; v ⊗ l ) = span { T p : p ∈ NC ( k , l ) } , T p ∈ B ( C N ⊗ k ; C N ⊗ l ) : Hom S + T p ( e i 1 ⊗ · · · ⊗ e i k ) = � j 1 ,..., j l δ p ( i , j ) e j 1 ⊗ · · · ⊗ e j l . Corollaire (Banica 99) The irreducible corepresentations of S + N can be labeled by N with • v (0) = 1 is the trivial representation and v = 1 ⊕ v (1) . • v ( k ) = ( v ( k ) ∗ ) is equivalent to v ( k ) , ∀ k ∈ N . ij • ∀ k , l ∈ N , v ( k ) ⊗ v ( l ) = � 2 min( k , l ) v ( k + l − r ) (Clebsch-Gordan). r =0

  7. Fusion rules for free wreath products Examples of CQG Definition (Bichon 00’) H + N (Γ) := ( C ( H + N (Γ)) , ∆) where C ( H + N (Γ)) is the C ∗ -algebra generated by the elements a ij ( g ) , i , j = 1 , . . . , N s.t. ∀ g , h ∈ Γ , • a ij ( g ) a ik ( h ) = δ j , k a ij ( gh ) , a ji ( g ) a ki ( h ) = δ j , k a ji ( gh ) , • � i a ij ( e ) = 1 = � j a ij ( e ) , • ∆( a ij ( g )) = � N k =1 a ik ( g ) ⊗ a kj ( g ) . Bichon : H + N (Γ) ≃ � Γ ≀ ∗ S + N where N ) := C ∗ (Γ) ∗ N ∗ C ( S + N ) / � g ( i ) v ij − v ij g ( i ) = 0 � C ( � Γ ≀ ∗ S + via a ij ( g ) �→ g ( i ) v ij = v ij g ( i ) . Example • Γ = { e } trivial : S + N . • Γ = Z / s Z : quantum reflection groups H s + N .

  8. Fusion rules for free wreath products Motivations Contents Examples of CQG 1 Motivations 2 Fusion rules for quantum reflection groups Operator algebraic properties for CQG Fusion rules for the free wreath products � Γ ≀ ∗ S + 3 N Operator algebraic properties for � Γ ≀ ∗ S + 4 N Work in progress 5

  9. Fusion rules for free wreath products Motivations Fusion rules for quantum reflection groups • Fusion rules for quantum reflection groups Banica and Vergnioux obtained a combinatorial description of the intertwiner spaces for H s + = H + N ( Z / s Z ) and then deduced the fusion N rules: Theorem (Banica, Vergnioux 08) The irreducible representations of H s + can be labelled by the worlds N ( i 1 , ..., i k ) whose letters are in Z / s Z , with involution ( i 1 , . . . , i k ) = ( − i k , . . . , − i 1 ) and the fusion rules: ( i 1 , . . . , i k ) ⊗ ( j 1 , . . . , j l ) = ( i 1 , . . . , i k − 1 , i k , j 1 , j 2 , . . . , j l ) ⊕ ( i 1 , . . . , i k − 1 , i k + j 1 , j 2 , . . . , j l ) ⊕ δ i k + j 1 , 0[ s ] ( i 1 , . . . , i k − 1 ) ⊗ ( j 2 , . . . , j l )

  10. Fusion rules for free wreath products Motivations Operator algebraic properties for CQG • Operator algebraic properties for CQG Let G = ( C ( G ) , ∆) be a GQC whose Haar state h is a trace. σ w , C r ( G ) = π h ( C ( G )) ≃ C ( G ) / ker ( π h ) . L ∞ ( G ) := C r ( G ) Notations: • Pol ( G ) ⊂ C ( G ) sub- ∗ -algebra (dense) generated by the coefficients of irreducible corepresentations, • C ( G ) 0 = C ∗ − � � i U ii : U ∈ Irr ( G ) � central algebra. Some results: • C r ( U + N ) is simple with unique trace, N ≥ 2 (Banica 99). • C r ( O + N ) is simple with unique trace, L ∞ ( O + N ) is a full II 1 factor, N ≥ 3 (Vaes and Vergnioux 07). • C r ( S + N ) is simple with unique trace, L ∞ ( S + N ) is a full II 1 factor, N ≥ 8 (Brannan 13). • L ∞ ( O + N ) , L ∞ ( U + N ), L ∞ ( S + N ) have the Haagerup property, N ≥ 2 (Brannan 12, 13).

  11. Fusion rules for free wreath products Γ ≀ ∗ S + Fusion rules for the free wreath products � N Contents Examples of CQG 1 Motivations 2 Fusion rules for quantum reflection groups Operator algebraic properties for CQG Fusion rules for the free wreath products � Γ ≀ ∗ S + 3 N Operator algebraic properties for � Γ ≀ ∗ S + 4 N Work in progress 5

  12. Fusion rules for free wreath products Γ ≀ ∗ S + Fusion rules for the free wreath products � N Intertwiner spaces in H + N (Γ): Strategy: Find a CQG G = ( C ( G ) , ∆), • s.t. we have a surjective morphisme π : C ( G ) ։ C ( H + N (Γ)), → If Γ = � S � , | S | = p , G = ∗ p i =1 ( H ∞ + ) N • s.t. the intertwiner spaces in G have a combinatorial description, • s.t. the kernel of π admits a combinatorial description. ⇒ The intertwiners in H + N (Γ) are given by the intertwiners in G = ∗ p i =1 ( H ∞ + ) and by the relations in the kernel. N � Combinatorial description of the intertwiner spaces for tensor products of the corepresentations a ( g ) := ( a ij ( g )) 1 ≤ i , j ≤ N , g ∈ Γ.

  13. Fusion rules for free wreath products Γ ≀ ∗ S + Fusion rules for the free wreath products � N Theorem (L.) Let Γ be discrete N ≥ 4 . Hom H + N (Γ) ( a ( g 1 ) ⊗ · · · ⊗ a ( g k ); a ( h 1 ) ⊗ · · · ⊗ a ( h l )) = span { T p : p ∈ NC Γ ( g 1 , . . . , g k ; h 1 , . . . , h l ) } NC Γ ( g 1 , . . . , g k ; h 1 , . . . , h l ) : NC part. s.t. in each bloc � g i = � h j . Theorem (L.) The irreducible corepresentations of H + N (Γ) can be indexed by the words ( g 1 , . . . , g k ) , g i ∈ Γ , with involution ( g 1 , . . . , g k ) = ( g − 1 k , . . . , g − 1 1 ) and fusion rules: ( g 1 , . . . , g k ) ⊗ ( h 1 , . . . , h l ) = ( g 1 , . . . , g k − 1 , g k , h 1 , h 2 , . . . , h l ) ⊕ ( g 1 , . . . , g k − 1 , g k h 1 , h 2 , . . . , h l ) ⊕ δ g k h 1 , e ( g 1 , . . . , g k − 1 ) ⊗ ( h 2 , . . . , h l ) .

  14. Fusion rules for free wreath products Γ ≀ ∗ S + Operator algebraic properties for � N Contents Examples of CQG 1 Motivations 2 Fusion rules for quantum reflection groups Operator algebraic properties for CQG Fusion rules for the free wreath products � Γ ≀ ∗ S + 3 N Operator algebraic properties for � Γ ≀ ∗ S + 4 N Work in progress 5

  15. Fusion rules for free wreath products Γ ≀ ∗ S + Operator algebraic properties for � N Irreducible + fusion rules for H + N (Γ): allow to prove several interesting properties for the associated operator algebras. Theorem (L.) The von Neumann algebras L ∞ ( H + N (Γ)) have the Haagerup property for all N ≥ 4 and all finite groups Γ . Strategy: • Construct convolution operators on L ∞ ( H + N (Γ)) from states on the central algebra C ( H + N (Γ)) 0 (Brannan 12), • Understand π : C ( H + N (Γ)) 0 → C ( S + N ) 0 ≃ C ([0 , N ]), • Consider the states on C ( H + N (Γ)) 0 , given by ev x ◦ π + estimates on Tchebytchev polynomials.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend