on volume surface reaction diffusion systems
play

On Volume-Surface Reaction-Diffusion systems Klemens Fellner - PowerPoint PPT Presentation

On Volume-Surface Reaction-Diffusion systems Klemens Fellner Institute of Mathematics and Scientific Computing, University of Graz joint works with L. Desvillettes, H. Egger, J.-F. Pietschmann, E. Latos, B.Q. Tang Marrakech 18.04.2018 p.


  1. On Volume-Surface Reaction-Diffusion systems Klemens Fellner Institute of Mathematics and Scientific Computing, University of Graz joint works with L. Desvillettes, H. Egger, J.-F. Pietschmann, E. Latos, B.Q. Tang Marrakech 18.04.2018 – p. 1/13

  2. Complex-Balanced Volume-Surface RD Network Protein-localisation before asymmetric stem-cell division Asymmetric stem-cell division: Cell-diversity by localisation of cell-fate determinants into one side of the cell cortex and into one of two daughter cells. a a GFP-Pon in SOP precursor cells in living Drosophila larvae [Meyer, Emery, Berdnik, Wirtz-Peitz, Knoblich, Current Biology, 2005] Marrakech 18.04.2018 – p. 2/13

  3. Complex-Balanced Volume-Surface RD Network Protein-localisation before asymmetric stem-cell division Mathematical model: “high” concentrations, insignificant stochastic effects system of (reversible) reaction-diffusion equations volume(cytoplasm)-surface(membran) dynamics Marrakech 18.04.2018 – p. 2/13

  4. A Volume-Surface Reaction-Diffusion Model Model Assumptions and Quantities Key protein: Lgl in cytoplasm (Ω) and cell cortex (Γ = ∂ Ω) . Key kinase: aPKC phosphorylates Lgl on a part Γ 2 of cortex. β L (Ω) P (Ω) α γ ξ λ ℓ (Γ) p (Γ 2 ) σ ( aPKC ) L ( t, x ) cytoplasmic Lgl ↔ l ( t, x ) cortical Lgl → activation of aPKC → p ( t, x ) cortical p-Lgl → P ( t, x ) cytoplasmic p-Lgl ↔ L ( t, x ) Complex-balanced reaction-diffusion network Bio: qualitative interplay reaction/surface/volume diffusion Marrakech 18.04.2018 – p. 3/13

  5. A Volume-Surface Reaction-Diffusion Model Detailed versus Complex Balance Equilibria A detailed balance equilibrium balances the forward and backward reactions between all species/complexes. A complex balance equilibrium balances the total inflow and total outflow from and into all species/complexes. Marrakech 18.04.2018 – p. 3/13

  6. A Volume-Surface Reaction-Diffusion Model A prototypical model I Volume equations with diffusion coefficients d L , d P > 0  L t − d L ∆ L = αP − βL, x ∈ Ω , t > 0 ,    ( V ) P t − d P ∆ P = − αP + βL, x ∈ Ω , t > 0 ,   x ∈ Ω L (0 , x ) = L 0 ( x ) , P (0 , x ) = P 0 ( x ) ,  Boundary conditions on ∂ Ω = Γ =Γ 1 ∪ Γ 2 and Γ 1 ∩ Γ 2 = ∅  ∂L d L ∂ν = γl − λL, x ∈ Γ , t > 0 ,    ( BC ) ∂P x ∈ Γ 1 , t > 0 , d P ∂ν = 0 ,   ∂P d P ∂ν = ξp, x ∈ Γ 2 , t > 0 ,  Reaction rates α, β, γ, λ, σ, ξ are positive constants Marrakech 18.04.2018 – p. 3/13

  7. A Volume-Surface Reaction-Diffusion Model A prototypical model II Boundary dynamics  l t − d l ∆ Γ l = λL − γl − σχ Γ 2 l, x ∈ Γ , t > 0     p t − d p ∆ Γ 2 p = σl − ξp, x ∈ Γ 2 , t > 0 ,      ∂p ( BD ) x ∈ ∂ Γ 2 , d p ∂ν Γ2 = 0 ,   x ∈ Γ , l (0 , x ) = l 0 ( x ) ,       p (0 , x ) = p 0 ( x ) , x ∈ Γ 2 ,  ∆ is the usual Laplacian in the domain Ω ∆ Γ and ∆ Γ 2 are Laplace-Beltrami operator on Γ and Γ 2 χ Γ 2 is the characteristic function of Γ 2 Marrakech 18.04.2018 – p. 3/13

  8. A Volume-Surface Reaction-Diffusion Model Properties and Local well-posedness Conservation law: total Lgl mass d �� � � � ( L ( t, x ) + P ( t, x )) + l ( t, x ) + p ( t, x ) = 0 . dt Ω Γ Γ 2 Local well-posedness: There exists of a unique weak/strong local solution ( L, P, l, p ) on (0 , T ) , which is non-negative if the intital data are so. a a [K.F ., S. Rosenberger, B.Q. Tang, Comm. Math. Sciences 2016] Marrakech 18.04.2018 – p. 3/13

  9. A Volume-Surface Reaction-Diffusion Model Complex balance reaction network Figure 1: l -Lgl (Γ) with and without surface diffusion Numerical analysis of VSRD models including discrete entropy structure/estimates: a a [Egger, F ., Pietschmann, Tang, to appear in Applied Math & Computation] Marrakech 18.04.2018 – p. 3/13

  10. A Volume-Surface Reaction-Diffusion Model Figure 2: p -Lgl (Γ) with and without surface diffusion Surface diffusion O (10 − 2 ) : indirect surface diffusion effect via weakly reversible reaction O (1) and volume diffusion O (10 − 2 ) Marrakech 18.04.2018 – p. 3/13

  11. A Volume-Surface Reaction-Diffusion Model Figure 3: L -Lgl (Ω) with and without surface diffusion Surface diffusion and weakly reversible reaction lead to stationary hump in L within Ω . Marrakech 18.04.2018 – p. 3/13

  12. A Volume-Surface Reaction-Diffusion Model Figure 4: P -Lgl (Ω) with and without surface diffusion Stationary hump in L as consequence of inflow from p into P → L and shape of Ω . Marrakech 18.04.2018 – p. 3/13

  13. A Volume-Surface Reaction-Diffusion Model Global existence and large time behaviour Theorem: Unique global-in-time weak solution ( L, P, l, p ) . Proof: L 2 -type energy estimate and Gronwall. Question: Convergence to complex balance equilibrium for all initial data and parameter? L 2 -Entropy? Marrakech 18.04.2018 – p. 3/13

  14. Another (Volume-Surface) RD Model Lipolysis Lipolysis: Breakdown of lipids and hydrolysis of triglycerides into glycerol and fatty acids. Marrakech 18.04.2018 – p. 4/13

  15. Systems of Reaction-Diffusion Equations Nonlinear Complex Balance Networks Substances: S = { S 1 , . . . , S N } , Complexes: C = { y 1 , . . . , y |C| } with y i ∈ ( { 0 } ∪ [1 , ∞ )) N , Reactions: R = { y → y ′ } from source y into product y ′ ∈ C . y r,i c y r = � N Mass action law reaction rate for y r → y ′ r : i =1 c i Reaction rate constant k r of the reaction y r → y ′ r . R ( c ) = � |R| r =1 k r c y r ( y ′ r − y r ) Reaction vector: Marrakech 18.04.2018 – p. 5/13

  16. Systems of Reaction-Diffusion Equations Nonlinear Complex Balance Networks Nonlinear reaction-diffusion network ∂ ∂t c − D ∆ c = R ( c ) for ( x, t ) ∈ Ω × (0 , + ∞ ) , with D = diag( d 1 , . . . , d N ) . Homogeneous Neumann BCs on Lipschitz domain Ω . [JH72]: A complex balanced network has a unique positive equilibrium, which balances the total outflow and inflow for all complexes y ∈ C : � � k r c y r ∞ = k s c y s ∞ . { r : y r = y } { s : y ′ s = y } Marrakech 18.04.2018 – p. 5/13

  17. Systems of Reaction-Diffusion Equations Nonlinear Complex Balance Networks Relative (free energy) entropy functional N c i log c i � � � � E ( c | c ∞ ) = − c i + c i, ∞ dx c i, ∞ Ω i =1 Explicit (nontrivial) entropy dissipation functional with e ( x, y ) = x log ( x/y ) − x + y D ( c ) = − d dt E ( c | c ∞ ) |R| N |∇ c i | 2 ∞ , c y ′ � c y r � � r � � k r c y r ≥ 0 = d i dx + ∞ e c y r c y ′ c i r Ω ∞ i =1 r =1 Marrakech 18.04.2018 – p. 5/13

  18. Systems of Reaction-Diffusion Equations Nonlinear Complex Balance Networks Theorem: a For complex balanced RD networks without boundary equilibria, any renormalised (Fisher [2015]) solution c ( x, t ) converges exponentially to c ∞ in L 1 with a rate λ/ 2 : N � � c i ( t ) − c i, ∞ � 2 L 1 (Ω) ≤ C − 1 CKP E ( c 0 | c ∞ ) e − λt for a.a. t > 0 , i =1 where C CKP is the constant in a Csiszár-Kullback-Pinsker type inequality. Renormalised solutions satisfy all mass/charge conservation laws and a weak entropy-dissipation law, Fisher [2017] a [K.F . B.Q.Tang, ZAMP 2018] Marrakech 18.04.2018 – p. 5/13

  19. The Entropy Method Quantitative large-time behaviour E ( f ) non-increasing convex entropy functional D ( f ) entropy production, f ∞ entropy minimising equilibrium dt E ( f ) = d d dt E ( f ) − E ( f ∞ )) = −D ( f ) ≤ 0 provided conservation laws: D ( f ) = 0 ⇐ ⇒ f = f ∞ D ≥ Φ( E ( f ) − E ( f ∞ )) , Φ ≥ 0 Φ(0) = 0 , ⇒ explicit convergence in entropy, exponential if Φ ′ (0) > 0 ⇒ convergence in L 1 : � f − f ∞ � 2 1 ≤ C ( E ( f ) − E ( f ∞ )) Cziszár-Kullback-Pinsker inequalities for convex entropies Marrakech 18.04.2018 – p. 6/13

  20. The Entropy Method Entropy Method Advantages: based on functional inequalities → "robust" avoids linearisation → "global" results allows for explicit constants nonlinear diffusion: [T], [CJMTU], [AMTU], [DV]. . . inhomogeneous kinetic equations: [DV], ... reaction-diffusion systems: [Grö83], [Grö92], [DF06], [DF08], [DF14], [MMH15], [FL16], [PSZ17], [DFT17], [FT17], [HHMM18], [FT18] no Bakry-Emery strategy Marrakech 18.04.2018 – p. 7/13

  21. Systems of Reaction-Diffusion Equations Entropy Method for Complex Balance Networks Theorem: a For any complex balanced reaction networks without boundary equilibria, there exists a constant λ > 0 and the “exponential” entropy entropy-dissipation estimate D ( c ( t )) ≥ λ E ( c ( t ) | c ∞ ) , Proof via convexification: [MMH15], [PSZ17] (detailed b.) Proof via explicit estimates using conservation laws Q c = M : [DFT17], [FT17], [FLT18] Method applies also to volume-surface RD systems Proof via reduction to finite-dimensional inequality: [FT18] a [L. Desvillettes, K.F ., B.Q. Tang, SIMA 2017], [K.F ., B.Q. Tang, Nonlinear Anal- ysis 2017.], [K.F . E.Latos B.Q.Tang, Annales IHP (C) 2018] Marrakech 18.04.2018 – p. 8/13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend