on using torsion points in the elliptic curve index
play

On Using Torsion Points in the Elliptic Curve Index Calculus Gu - PowerPoint PPT Presentation

On Using Torsion Points in the Elliptic Curve Index Calculus Gu ena el Renault Sorbonne Universit es UPMC, INRIA, CNRS LIP6 1/43 General Context Discrete Logarithm Problem (DLP) Given a finite cyclic group ( G = g , +) and h


  1. On Using Torsion Points in the Elliptic Curve Index Calculus Gu´ ena¨ el Renault Sorbonne Universit´ es UPMC, INRIA, CNRS LIP6 1/43

  2. General Context Discrete Logarithm Problem (DLP) Given a finite cyclic group ( G = � g � , +) and h ∈ G , find k such that h = [ k ] g = g + · · · + g k times � √ # G � Generic algorithms O ◮ Baby Step Giant Step, Pollard’s rho, etc. ◮ For any black box group G , optimal complexity (Shoup) Index Calculus can be quasi-polynomial, sub-exponential ◮ sieving + linear algebra ◮ G = ( F × 2 k , × ) ◮ G = ( F × q , × ) , G = ( J C ( F q ) , +) with genus g > 2 ☞ G = E ( F q ) no sub-exponential index calculus algo. in general 2/43

  3. Context ☞ Index calculus algo. adaptation for E ( F q n ) ( n small) Semaev/Gaudry/Diem ( ≈ 2005) (Point Decomposition Problem) Semaev Summation Polynomial Polynomial System Solving ☞ Increasing the efficiency by using the symmetries ☞ Using Symmetries in the Index Calculus for ECDLP (J. Crypto. 2014) (J.-C. Faug` ere, P. Gaudry, L. Huot, G. R.) ☞ Symmetrized Summation Polynomials (Eurocrypt’14) (J.-C. Faug` ere, L. Huot, A. Joux, G. R., V. Vitse) 3/43

  4. Outline PDP in the Index Calculus 1 Polynomial System Solving 2 PoSSo With Symmetries 3 From Torsion Point to Symmetry 4 Characteristic 2 5 New Computational Record: 8th Summation Polynomial 6 Conclusion 7 4/43

  5. Outline PDP in the Index Calculus 1 Polynomial System Solving 2 PoSSo With Symmetries 3 From Torsion Point to Symmetry 4 Characteristic 2 5 New Computational Record: 8th Summation Polynomial 6 Conclusion 7 5/43

  6. Index Calculus for ECDLP Algorithm (Gaudry 2005) Input: P, Q ∈ E ( F q n ) Output: x such that Q = [ x ] P 1. Def. factor base: F = { ( x, y ) ∈ E ( F q n ) | x ∈ F q } 2. Sieving: [ a j ] P ⊕ [ b j ] Q = P 1 ⊕ · · · ⊕ P n , P i ∈ F until having # F + 1 such relations � 3. Linear algebra [ λ j · a j ] P ⊕ [ λ j · b j ] Q = 0 E ( F qn ) j Point Decomposition Problem Given R ∈ E F a factor base of points in E find P 1 , . . . , P n ∈ F such that R = P 1 ⊕ . . . ⊕ P n 6/43

  7. Point Decomposition Problem PDP( n, R, F ) Given R ∈ E F a factor base of points in E find P 1 , . . . , P n ∈ F such that R = P 1 ⊕ . . . ⊕ P n ☞ Modeling the problem as a polynomial system { g 1 , . . . , g s } and solve this system: � ( x i , y i ) ∈ E ( x 1 , y 1 ) ⊕ ( x 2 , y 2 ) ⊕ · · · ⊕ ( x n , y n ) = ( R x , R y ) ☞ The solution has to be found in F 7/43

  8. Algebraic modelling of PDP: Summation polynomials Semaev, 2004, Gaudry, 2005 ☞ Projection of the PDP( n, R = 0 , F = { ( x, y ) ∈ E ( F q n ) | x ∈ F q } ) PDP: g 1 ( , . . . , ) = · · · = g s ( , . . . , ) = 0 Projection π n Summation: f n ( , . . . , ) = 0 8/43

  9. Algebraic modelling of PDP: Summation polynomials Semaev, 2004, Gaudry, 2005 ☞ Projection of the PDP( n, R = 0 , F = { ( x, y ) ∈ E ( F q n ) | x ∈ F q } ) PDP: � g 1 ( x 1 , . . . , x m , y 1 , . . . , y m ) , . . . , g s ( x 1 , . . . , x m , y 1 , . . . , y m ) � π : ( x, y ) → x Elimination (Resultant, Gr¨ obner basis) Summation: � f n ( x 1 , . . . , x n ) � = � g 1 , . . . , g s � ∩ F q n [ x 1 , . . . , x n ] deg x i ( f n ) � 2 n − 2 Characterization f n ( x 1 , ..., x n ) = 0 � n ∃ ( y 1 , ..., y n ) ∈ F q n s.t. ∀ i, P i = ( x i , y i ) ∈ E and P 1 ⊕ · · · ⊕ P n = 0 8/43

  10. Algebraic modelling of PDP: Summation polynomials Semaev, 2004, Gaudry, 2005 ☞ Projection of the PDP( n, R = 0 , F = { ( x, y ) ∈ E ( F q n ) | x ∈ F q } ) PDP: � g 1 ( x 1 , . . . , x m , y 1 , . . . , y m ) , . . . , g s ( x 1 , . . . , x m , y 1 , . . . , y m ) � π : ( x, y ) → x Elimination (Resultant, Gr¨ obner basis) Summation: � f n ( x 1 , . . . , x n ) � = � g 1 , . . . , g s � ∩ F q n [ x 1 , . . . , x n ] deg x i ( f n ) � 2 n − 2 Application in Index Calculus: ( Gaudry 2005 ) Solving PDP( R, F ) with factor base F = { ( x, y ) ∈ E ( F q n ) | x ∈ F q } . � Finding ( x 1 , . . . , x n ) with x i ∈ F q s.t. f n +1 ( x 1 , ..., x n , ( − R ) x ) = 0 ☞ In Weierstrass model R x = ( − R ) x 8/43

  11. From summation polynomials to PoSSo Problem We want to find P 1 , . . . , P n ∈ F = { ( x, y ) ∈ E | x ∈ F q } such that R = P 1 + · · · + P n ⇐ ⇒ P 1 + · · · + P n − R = 0 E � Finding ( x 1 , . . . , x n ) with x i ∈ F q s.t. f n +1 ( x 1 , ..., x n , R x ) = 0 Solving process: Restriction of scalar on sum. polynomial F q n ≃ F q ( ω ) : n dimensional F q -vector space n − 1 � ϕ i ( x 1 , . . . , x n ) · ω i f n +1 ( x 1 , . . . , x n , R x ) = 0 E = i =0 9/43

  12. From summation polynomials to PoSSo Solving process: Restriction of scalar on sum. polynomial F q n ≃ F q ( ω ) : n dimensional F q -vector space n − 1 � ϕ i ( x 1 , . . . , x n ) · ω i f n +1 ( x 1 , . . . , x n , R x ) = 0 E = i =0  S = { ϕ 0 , . . . , ϕ n − 1 } ⊂ F q [ x 1 , . . . , x n ] -  ⇒ - n variables, n equations  solutions in F q - H 1 : The polynomial systems S are zero-dimensional 9/43

  13. Outline PDP in the Index Calculus 1 Polynomial System Solving 2 PoSSo With Symmetries 3 From Torsion Point to Symmetry 4 Characteristic 2 5 New Computational Record: 8th Summation Polynomial 6 Conclusion 7 10/43

  14. Solving 0 -dim polynomial systems Let S = { f 1 , . . . , f n } where f i ∈ K [ x 1 , . . . , x n ] and Deg( f i ) ≤ 2 n − 1 Solving S means here to compute V K ( �S� ) 11/43

  15. Solving 0 -dim polynomial systems Let S = { f 1 , . . . , f n } where f i ∈ K [ x 1 , . . . , x n ] and Deg( f i ) ≤ 2 n − 1 Solving S means here to compute V K ( �S� ) Gr¨ obner basis Since |V K | < ∞ , the Gr¨ obner basis G of �S� w.r.t. lexicographical order with x 1 > . . . > x n then G has a triangular form  h 1 , 1 ( x 1 , . . . , x n ) , . . . , h 1 ,k 1 ( x 1 , . . . , x n )     . . .  h n − 1 , 1 ( x n − 1 , x n ) , . . . , h n − 1 ,k n − 1 ( x n − 1 , x n )    h n ( x n ) ☞ Factoring univariate polynomials over a finite field. 11/43

  16. Solving 0 -dim polynomial systems Let S = { f 1 , . . . , f n } where f i ∈ K [ x 1 , . . . , x n ] and Deg( f i ) ≤ 2 n − 1 Solving S means here to compute V K ( �S� ) ☞ Compute a GB of �S� w.r.t. a lexicographical order. Zero-dim solve 1. Compute GB DRL from S ( F 4 /F 5 ) 2. Compute GB LEX from GB DRL (FGLM) 11/43

  17. Solving 0 -dim polynomial systems Let S = { f 1 , . . . , f n } where f i ∈ K [ x 1 , . . . , x n ] and Deg( f i ) ≤ 2 n − 1 Compute GB DRL from S Compute GB LEX from GB DRL ☞ See K [ x 1 , . . . , x n ] / �S� as a K -ev ☞ Linear alg. on Macaulay mat. m 1 > m 2 > . . . GB DRL ⇒ K -ev B 1   . . . Change of basis  c 1 c 2  t i,j f i i,j . . . i,j B 1 → B 2 K -ev B 2 ⇒ GB LEX ere F 4 , F 5 Faug` ere, Gaudry, Huot, R. ISSAC’14 Faug` � ne nω 2 ( n − 1) nω + n · deg( � S � ) ω � � O ☞ deg( � S � ) = the number of solutions (with multiplicities) ☞ ω represents the linear algebra constant 11/43

  18. On the complexity of computing GB DRL ☞ These results are usually obtain for homogeneous polynomial systems ☞ In order to avoid fall of degree issues, need to consider regular situation Regular sequences A sequence of homogeneous polynomials ( f 1 , . . . , f n ) ⊂ K [ x 1 , . . . , x n ] is said to be regular when f i +1 is a regular element in K [ x 1 , . . . , x n ] / � f 1 , . . . f i � Affine regular sequences A sequence of affine polynomials ( f 1 , . . . , f n ) ⊂ K [ x 1 , . . . , x n ] is said to be regular when the sequence f ( h ) , . . . , f ( h ) of corresponding homogeneous n 1 component of highest degree is regular. ☞ Complexity DRL(pol. sys. affine regular) < DRL(its homogenization) H 2 : The affine polynomial systems S are regular ( H 2 ⇒ H 1 ) 12/43

  19. Outline PDP in the Index Calculus 1 Polynomial System Solving 2 PoSSo With Symmetries 3 From Torsion Point to Symmetry 4 Characteristic 2 5 New Computational Record: 8th Summation Polynomial 6 Conclusion 7 13/43

  20. Invariant Polynomial/System Let be given a polynomial system  f 1 ( x 1 , . . . , x n )     . . . S :  f n − 1 ( x 1 , . . . , x n )    f n ( x 1 , . . . , x n ) σ ∈ G ⊂ GL ( K , n ) , σ · f i = f i ( σ · x ) ☞ Assume all f i are invariant under the action of G . How this assumption can help in solving the polynomial system? 14/43

  21. Invariant ring Definition Let K [ x 1 , . . . , x n ] be a polynomial ring and G ⊂ GL ( K , n ) . K [ x 1 , . . . , x n ] G = { p ∈ K [ x 1 , . . . , x n ] | σ · p = p for all σ ∈ G } We want to efficiently solve  f 1 ( x 1 , . . . , x n )     . . . S :  f n − 1 ( x 1 , . . . , x n )    f n ( x 1 , . . . , x n ) under the assumption f 1 , . . . , f n ∈ K [ x 1 , . . . , x n ] G 15/43

  22. Hironaka decomposition Hilbert’s finiteness theorem Let G ⊂ GL ( K , n ) . Its invariant ring K [ x 1 , . . . , x n ] G is finitely generated. t � K [ x 1 , . . . , x n ] G = η i K [ θ 1 , . . . , θ n ] . i =1 primary invariants θ 1 , . . . , θ n ∈ K [ x 1 , . . . , x n ] G secondary invariants η 1 , . . . , η t ∈ K [ x 1 , . . . , x n ] G ☞ primary invariants are algebraically independent 16/43

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend