optimality conditions in optimal control of
play

Optimality Conditions in Optimal Control of Elastoplasticity Roland - PowerPoint PPT Presentation

Optimality Conditions in Optimal Control of Elastoplasticity Roland Herzog Gerd Wachsmuth Christian Meyer Numerical Mathematics TU Dortmund Workshop on Control and Optimization of PDEs Graz, October 10, 2011 DFG SPP 1253 Roland Herzog


  1. Optimality Conditions in Optimal Control of Elastoplasticity Roland Herzog Gerd Wachsmuth Christian Meyer Numerical Mathematics TU Dortmund Workshop on Control and Optimization of PDEs Graz, October 10, 2011 DFG SPP 1253 Roland Herzog Optimality Conditions in Plasticity Control

  2. Outline The Elastoplastic Forward Problem 1 Introduction The Plastic Multiplier Comparison to Obstacle Problem An Elastoplastic Control Problem 2 MPCCs C-Stationarity B-Stationarity Roland Herzog Optimality Conditions in Plasticity Control

  3. Outline The Elastoplastic Forward Problem 1 Introduction The Plastic Multiplier Comparison to Obstacle Problem An Elastoplastic Control Problem 2 MPCCs C-Stationarity B-Stationarity This talk: static (incremental) setting See talk by Gerd Wachsmuth (Tue, 9:30) for quasi-static setting and numerics Roland Herzog Optimality Conditions in Plasticity Control

  4. Typical Configuration in Linear Elasticity g = 0 g f Γ D Γ N Material laws and boundary conditions Variables C − 1 σ = ε ( u ) σ stress tensor in Ω Hooke’s Law u displacement vector ∇ · σ = − f in Ω equilibrium condition ε ( u ) lin. strain tensor u = 0 on Γ D displacement b/c σ · n = g on Γ N stress b/c ε ( u ) = 1 2 ( ∇ u + ∇ u ⊤ ) C ijkl = λ δ ij δ kl + µ ( δ ik δ jl + δ il δ jk ) Roland Herzog Optimality Conditions in Plasticity Control

  5. Elasticity & Plasticity: Energy Minimization Linear elasticity 1 Minimize 2 a ( σ , σ ) s.t. b ( σ , v ) = � ℓ, v � for all v ∈ V Roland Herzog Optimality Conditions in Plasticity Control

  6. Elasticity & Plasticity: Energy Minimization Linear elasticity 1 Minimize 2 a ( σ , σ ) s.t. b ( σ , v ) = � ℓ, v � for all v ∈ V Bilinear and linear forms � σ : C − 1 τ d x a ( σ , τ ) = Ω � ε ( u ) = 1 2 ( ∇ u + ∇ u ⊤ ) b ( σ , v ) = − σ : ε ( v ) d x , Ω � � � ℓ, v � = − f · v d x − g · v d s Ω Γ N Roland Herzog Optimality Conditions in Plasticity Control

  7. Elasticity & Plasticity: Energy Minimization Linear elasticity 1 Minimize 2 a ( σ , σ ) s.t. b ( σ , v ) = � ℓ, v � for all v ∈ V Bilinear and linear forms � σ : C − 1 τ d x a ( σ , τ ) = Ω � ε ( u ) = 1 2 ( ∇ u + ∇ u ⊤ ) b ( σ , v ) = − σ : ε ( v ) d x , Ω � � � ℓ, v � = − f · v d x − g · v d s Ω Γ N � � σ ∈ S = L 2 (Ω; R d × d u ∈ V = H 1 Γ D (Ω; R d ) , sym ) , u = 0 on Γ D Roland Herzog Optimality Conditions in Plasticity Control

  8. Elasticity & Plasticity: Energy Minimization Linear elasticity 1 Minimize 2 a ( σ , σ ) s.t. b ( σ , v ) = � ℓ, v � for all v ∈ V Bilinear and linear forms � σ : C − 1 τ d x a ( σ , τ ) = σ Ω � ε ( u ) = 1 2 ( ∇ u + ∇ u ⊤ ) b ( σ , v ) = − σ : ε ( v ) d x , Ω � � � ℓ, v � = − f · v d x − g · v d s ε ( u ) Ω Γ N � � σ ∈ S = L 2 (Ω; R d × d u ∈ V = H 1 Γ D (Ω; R d ) , sym ) , u = 0 on Γ D Roland Herzog Optimality Conditions in Plasticity Control

  9. Elasticity & Plasticity: Energy Minimization Linear elasticity 1 Minimize 2 a ( σ , σ ) s.t. b ( σ , v ) = � ℓ, v � for all v ∈ V Bilinear and linear forms � σ : C − 1 τ d x a ( σ , τ ) = σ Ω � ε ( u ) = 1 2 ( ∇ u + ∇ u ⊤ ) b ( σ , v ) = − σ : ε ( v ) d x , Ω � � � ℓ, v � = − f · v d x − g · v d s ε ( u ) Ω Γ N � � σ ∈ S = L 2 (Ω; R d × d u ∈ V = H 1 Γ D (Ω; R d ) , sym ) , u = 0 on Γ D Roland Herzog Optimality Conditions in Plasticity Control

  10. Elasticity & Plasticity: Energy Minimization Static plasticity (linear kinematic hardening) 1 Minimize 2 a ( Σ , Σ ) , Σ = ( σ , χ ) s.t. b ( Σ , v ) = � ℓ, v � for all v ∈ V and Σ ∈ K (convex) Bilinear and linear forms � � σ : C − 1 τ d x + χ : H − 1 µ d x a ( Σ , T ) = σ Ω Ω � ε ( u ) = 1 2 ( ∇ u + ∇ u ⊤ ) b ( Σ , v ) = − σ : ε ( v ) d x , Ω � � � ℓ, v � = − f · v d x − g · v d s ε ( u ) Ω Γ N � � χ , σ ∈ S = L 2 (Ω; R d × d u ∈ V = H 1 Γ D (Ω; R d ) , sym ) , u = 0 on Γ D Roland Herzog Optimality Conditions in Plasticity Control

  11. Kinematic Hardening Model: Yield Condition Von Mises yield condition (linear kinematic hardening) � � � sym : | σ D + χ D | Frob ≤ � ( σ , χ ) ∈ R d × d K = σ 0 := 2 / 3 σ 0 K = { Σ = ( σ , χ ) ∈ S × S : ( σ ( x ) , χ ( x )) ∈ K a.e. in Ω } A D = A − 1 d (trace A ) I Roland Herzog Optimality Conditions in Plasticity Control

  12. Kinematic Hardening Model: Yield Condition Von Mises yield condition (linear kinematic hardening) � � � ( σ , χ ) ∈ R d × d K = sym : |D Σ | ≤ � σ := 2 / 3 σ 0 K = { Σ = ( σ , χ ) ∈ S × S : ( σ ( x ) , χ ( x )) ∈ K a.e. in Ω } A D = A − 1 D Σ = σ D + χ D d (trace A ) I Roland Herzog Optimality Conditions in Plasticity Control

  13. Two Ways to Write the Forward Problem The unique minimizer ( σ , χ , u ) ∈ S × S × V is characterized by Σ ∈ K , a ( Σ , T − Σ ) + b ( T − Σ , u ) ≥ 0 for all T = ( τ , µ ) ∈ K b ( Σ , v ) = � ℓ, v � for all v ∈ V Roland Herzog Optimality Conditions in Plasticity Control

  14. Two Ways to Write the Forward Problem The unique minimizer ( σ , χ , u ) ∈ S × S × V is characterized by Σ ∈ K , a ( Σ , T − Σ ) + b ( T − Σ , u ) ≥ 0 for all T = ( τ , µ ) ∈ K b ( Σ , v ) = � ℓ, v � for all v ∈ V Note: The displacement field u acts as a Lagrange multiplier. Roland Herzog Optimality Conditions in Plasticity Control

  15. Two Ways to Write the Forward Problem The unique minimizer ( σ , χ , u ) ∈ S × S × V is characterized by Σ ∈ K , a ( Σ , T − Σ ) + b ( T − Σ , u ) ≥ 0 for all T = ( τ , µ ) ∈ K b ( Σ , v ) = � ℓ, v � for all v ∈ V Equivalently, there exists λ ∈ L 2 (Ω) (plastic multiplier) such that a ( Σ , T ) + b ( T , u ) + c ( λ, Σ , T ) = 0 for all T = ( τ , µ ) ∈ S × S b ( Σ , v ) = � ℓ, v � for all v ∈ V � � |D Σ | 2 − � 1 σ 2 0 ≤ λ ⊥ ≤ 0 a.e. in Ω 2 0 � c ( λ, Σ , T ) = λ D Σ : D T d x Ω [Herzog, Meyer, Wachsmuth (GAMM, 2011)] Roland Herzog Optimality Conditions in Plasticity Control

  16. Two Ways to Write the Forward Problem The unique minimizer ( σ , χ , u ) ∈ S × S × V is characterized by Σ ∈ K , a ( Σ , T − Σ ) + b ( T − Σ , u ) ≥ 0 for all T = ( τ , µ ) ∈ K b ( Σ , v ) = � ℓ, v � for all v ∈ V Equivalently, there exists λ ∈ L 2 (Ω) (plastic multiplier) such that a ( Σ , T ) + b ( T , u ) + c ( λ, Σ , T ) = 0 for all T = ( τ , µ ) ∈ S × S b ( Σ , v ) = � ℓ, v � for all v ∈ V � � |D Σ | 2 − � 1 σ 2 0 ≤ λ ⊥ ≤ 0 a.e. in Ω 2 0 � c ( λ, Σ , T ) = λ D Σ : D T d x Ω L 2 L ∞ L 2 [Herzog, Meyer, Wachsmuth (GAMM, 2011)] Roland Herzog Optimality Conditions in Plasticity Control

  17. Comparison to the Obstacle Problem Static Plasticity Problem a ( Σ , T − Σ ) + b ( τ − σ , u ) ≥ 0 ∀ T ∈ K b ( σ , v ) = � ℓ, v � ∀ v ∈ V ` ´ ` ´ with � ℓ, v � = − f , v Ω − g , v Γ N ˘ ¯ K = Σ = ( σ , χ ) : |D Σ | ≤ e σ 0 Roland Herzog Optimality Conditions in Plasticity Control

  18. Comparison to the Obstacle Problem Static Plasticity Problem Obstacle Problem a ( y , z − y ) ≥ ( f , z − y ) Ω ∀ z ∈ K a ( Σ , T − Σ ) + b ( τ − σ , u ) ≥ 0 ∀ T ∈ K b ( σ , v ) = � ℓ, v � ∀ v ∈ V ` ´ ` ´ ` ´ with a ( y , z ) = ∇ y , ∇ z with � ℓ, v � = − f , v Ω − g , v Ω Γ N ˘ ¯ ˘ ¯ y ∈ H 1 K = Σ = ( σ , χ ) : |D Σ | ≤ e σ 0 K = 0 (Ω) : y ≥ 0 Roland Herzog Optimality Conditions in Plasticity Control

  19. Comparison to the Obstacle Problem Static Plasticity Problem Obstacle Problem a ( y , z − y ) ≥ ( f , z − y ) Ω ∀ z ∈ K a ( Σ , T − Σ ) + b ( τ − σ , u ) ≥ 0 ∀ T ∈ K b ( σ , v ) = � ℓ, v � ∀ v ∈ V ` ´ ` ´ ` ´ with a ( y , z ) = ∇ y , ∇ z with � ℓ, v � = − f , v Ω − g , v Ω Γ N ˘ ¯ ˘ ¯ y ∈ H 1 K = Σ = ( σ , χ ) : |D Σ | ≤ e σ 0 K = 0 (Ω) : y ≥ 0 VI in mixed form elliptic VI Roland Herzog Optimality Conditions in Plasticity Control

  20. Comparison to the Obstacle Problem Static Plasticity Problem Obstacle Problem a ( y , z − y ) ≥ ( f , z − y ) Ω ∀ z ∈ K a ( Σ , T − Σ ) + b ( τ − σ , u ) ≥ 0 ∀ T ∈ K b ( σ , v ) = � ℓ, v � ∀ v ∈ V ` ´ ` ´ ` ´ with a ( y , z ) = ∇ y , ∇ z with � ℓ, v � = − f , v Ω − g , v Ω Γ N ˘ ¯ ˘ ¯ y ∈ H 1 K = Σ = ( σ , χ ) : |D Σ | ≤ e σ 0 K = 0 (Ω) : y ≥ 0 VI in mixed form elliptic VI a algebraic, b 1st order a 2nd order Roland Herzog Optimality Conditions in Plasticity Control

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend