on the fraction of capacity one relay can achieve in
play

On the Fraction of Capacity One Relay can Achieve in Gaussian - PowerPoint PPT Presentation

2020 IEEE International Symposium on Information Theory On the Fraction of Capacity One Relay can Achieve in Gaussian Half-Duplex Diamond Networks Authors: Sarthak Jain (Presenter) Soheil Mohajer Martina Cardone University of Minnesota, T


  1. 2020 IEEE International Symposium on Information Theory On the Fraction of Capacity One Relay can Achieve in Gaussian Half-Duplex Diamond Networks Authors: Sarthak Jain (Presenter) Soheil Mohajer Martina Cardone University of Minnesota, T win Cities (The work of the authors was supported in part by the U.S. National Science Foundation under Grant CCF-1907785.) 1

  2. System Model 1 r 1 ℓ 1 2 r 2 ℓ 2 Diamond Network S D r i ℓ i i r N ℓ N N 𝒪 = {( ℓ i , r i ) ∀ i ∈ [1 : N ]} Half-Duplex mode of operation 2

  3. Capacity and Scheduling 1 C ( 𝒪 ) − G 1 ≤ ˜ C ≤ C ( 𝒪 ) + G 2 r 1 ℓ 1 r 2 ℓ 2 2 Approximate Capacity Shannon Capacity D S r 3 ℓ 3 3 A. S. Avestimehr, et al, IEEE Trans. Inf. Theory , 2011. A. Ozgur, et al., IEEE Trans. Inf. Theory , 2013. 3 S. Lim, et al. IEEE Trans. Inf. Theory , 2011.

  4. Capacity and Scheduling 1 C ( 𝒪 ) − G 1 ≤ ˜ C ≤ C ( 𝒪 ) + G 2 r 1 ℓ 1 where, G 1 + G 2 = f ( N ) r 2 ℓ 2 2 D S r 3 ℓ 3 3 A. S. Avestimehr, et al, IEEE Trans. Inf. Theory , 2011. A. Ozgur, et al., IEEE Trans. Inf. Theory , 2013. 4 S. Lim, et al. IEEE Trans. Inf. Theory , 2011.

  5. Capacity and Scheduling 1 C ( 𝒪 ) − G 1 ≤ ˜ C ≤ C ( 𝒪 ) + G 2 r 1 ℓ 1 where, G 1 + G 2 = f ( N ) r 2 ℓ 2 2 D S C ( 𝒪 ) = max t λ r 3 λ 𝒯 ( max ℓ 3 i ∈𝒯∩Ω r i ) 𝗍 . 𝗎 . t ≤ ∑ i ∈𝒯 c ∩Ω c ℓ i + max ∀Ω ⊆ [ N ] 𝒯⊆ [ N ] 3 ∑ λ 𝒯 = 1, λ 𝒯 ≥ 0, ∀𝒯 ⊆ [ N ] 𝒯⊆ [ N ] A. S. Avestimehr, et al, IEEE Trans. Inf. Theory , 2011. A. Ozgur, et al., IEEE Trans. Inf. Theory , 2013. 5 S. Lim, et al. IEEE Trans. Inf. Theory , 2011.

  6. Capacity and Scheduling 1 C ( 𝒪 ) − G 1 ≤ ˜ C ≤ C ( 𝒪 ) + G 2 r 1 ℓ 1 where, G 1 + G 2 = f ( N ) r 2 ℓ 2 2 D S C ( 𝒪 ) = max t λ r 3 λ 𝒯 ( max ℓ 3 i ∈𝒯∩Ω r i ) 𝗍 . 𝗎 . t ≤ ∑ i ∈𝒯 c ∩Ω c ℓ i + max ∀Ω ⊆ [ N ] 𝒯⊆ [ N ] 3 ∑ λ 𝒯 = 1, λ 𝒯 ≥ 0, ∀𝒯 ⊆ [ N ] 𝒯⊆ [ N ] 𝒯 : ∅ , {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} 𝒯 ⊆ [1 : N ] λ 𝒯 : fraction of time in state 𝒯 λ ∅ , λ {1} , λ {2} , λ {3} , λ {1,2} , λ {1,3} , λ {2,3} , λ {1,2,3} i ∈ 𝒯 : Relay i Tx i ∈ 𝒯 c : Relay i Rx A. S. Avestimehr, et al, IEEE Trans. Inf. Theory , 2011. A. Ozgur, et al., IEEE Trans. Inf. Theory , 2013. 6 S. Lim, et al. IEEE Trans. Inf. Theory , 2011.

  7. Capacity and Scheduling 1 C ( 𝒪 ) − G 1 ≤ ˜ C ≤ C ( 𝒪 ) + G 2 r 1 ℓ 1 where, G 1 + G 2 = f ( N ) r 2 ℓ 2 2 D S C ( 𝒪 ) = max t λ r 3 λ 𝒯 ( max ℓ 3 i ∈𝒯∩Ω r i ) 𝗍 . 𝗎 . t ≤ ∑ i ∈𝒯 c ∩Ω c ℓ i + max ∀Ω ⊆ [ N ] 𝒯⊆ [ N ] 3 ∑ λ 𝒯 = 1, λ 𝒯 ≥ 0, ∀𝒯 ⊆ [ N ] 𝒯⊆ [ N ] 𝒯 : ∅ , {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} 𝒯 ⊆ [1 : N ] λ 𝒯 : fraction of time in state 𝒯 λ ∅ , λ {1} , λ {2} , λ {3} , λ {1,2} , λ {1,3} , λ {2,3} , λ {1,2,3} i ∈ 𝒯 : Relay i Tx i ∈ 𝒯 c : Relay i Rx A. S. Avestimehr, et al, IEEE Trans. Inf. Theory , 2011. A. Ozgur, et al., IEEE Trans. Inf. Theory , 2013. 7 S. Lim, et al. IEEE Trans. Inf. Theory , 2011.

  8. Capacity and Scheduling 1 C ( 𝒪 ) − G 1 ≤ ˜ C ≤ C ( 𝒪 ) + G 2 r 1 ℓ 1 where, G 1 + G 2 = f ( N ) r 2 ℓ 2 2 D S C ( 𝒪 ) = max t λ r 3 λ 𝒯 ( max ℓ 3 i ∈𝒯∩Ω r i ) 𝗍 . 𝗎 . t ≤ ∑ i ∈𝒯 c ∩Ω c ℓ i + max ∀Ω ⊆ [ N ] 𝒯⊆ [ N ] 3 ∑ λ 𝒯 = 1, λ 𝒯 ≥ 0, ∀𝒯 ⊆ [ N ] 𝒯⊆ [ N ] 𝒯 : ∅ , {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} 𝒯 ⊆ [1 : N ] λ 𝒯 : fraction of time in state 𝒯 λ ∅ , λ {1} , λ {2} , λ {3} , λ {1,2} , λ {1,3} , λ {2,3} , λ {1,2,3} i ∈ 𝒯 : Relay i Tx i ∈ 𝒯 c : Relay i Rx A. S. Avestimehr, et al, IEEE Trans. Inf. Theory , 2011. A. Ozgur, et al., IEEE Trans. Inf. Theory , 2013. 8 S. Lim, et al. IEEE Trans. Inf. Theory , 2011.

  9. Capacity and Scheduling 1 C ( 𝒪 ) − G 1 ≤ ˜ C ≤ C ( 𝒪 ) + G 2 r 1 ℓ 1 where, G 1 + G 2 = f ( N ) r 2 ℓ 2 2 D S C ( 𝒪 ) = max t λ r 3 λ 𝒯 ( max ℓ 3 i ∈𝒯∩Ω r i ) 𝗍 . 𝗎 . t ≤ ∑ i ∈𝒯 c ∩Ω c ℓ i + max ∀Ω ⊆ [ N ] 𝒯⊆ [ N ] 3 ∑ λ 𝒯 = 1, λ 𝒯 ≥ 0, ∀𝒯 ⊆ [ N ] 𝒯⊆ [ N ] 𝒯 : ∅ , {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} 𝒯 ⊆ [1 : N ] λ 𝒯 : fraction of time in state 𝒯 λ ∅ , λ {1} , λ {2} , λ {3} , λ {1,2} , λ {1,3} , λ {2,3} , λ {1,2,3} i ∈ 𝒯 : Relay i Tx Ω = ∅ , {1}, {2}, {3}, {1,2}, {2,3}, {1,3}, {1,2,3} i ∈ 𝒯 c : Relay i Rx A. S. Avestimehr, et al, IEEE Trans. Inf. Theory , 2011. A. Ozgur, et al., IEEE Trans. Inf. Theory , 2013. 9 S. Lim, et al. IEEE Trans. Inf. Theory , 2011.

  10. Capacity and Scheduling 1 C ( 𝒪 ) − G 1 ≤ ˜ C ≤ C ( 𝒪 ) + G 2 Ω = {2,3} r 1 ℓ 1 where, G 1 + G 2 = f ( N ) r 2 ℓ 2 2 D S C ( 𝒪 ) = max t λ r 3 λ 𝒯 ( max ℓ 3 i ∈𝒯∩Ω r i ) 𝗍 . 𝗎 . t ≤ ∑ i ∈𝒯 c ∩Ω c ℓ i + max ∀Ω ⊆ [ N ] 𝒯⊆ [ N ] 3 ∑ λ 𝒯 = 1, λ 𝒯 ≥ 0, ∀𝒯 ⊆ [ N ] 𝒯⊆ [ N ] 𝒯 : ∅ , {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} 𝒯 ⊆ [1 : N ] λ 𝒯 : fraction of time in state 𝒯 λ ∅ , λ {1} , λ {2} , λ {3} , λ {1,2} , λ {1,3} , λ {2,3} , λ {1,2,3} i ∈ 𝒯 : Relay i Tx Ω = ∅ , {1}, {2}, {3}, {1,2}, {2,3}, {1,3}, {1,2,3} i ∈ 𝒯 c : Relay i Rx A. S. Avestimehr, et al, IEEE Trans. Inf. Theory , 2011. A. Ozgur, et al., IEEE Trans. Inf. Theory , 2013. 10 S. Lim, et al. IEEE Trans. Inf. Theory , 2011.

  11. Approximate Capacity of One Relay Network C ( 𝒪 ) = max t λ λ 𝒯 ( max i ∈𝒯∩Ω r i ) 𝗍 . 𝗎 . t ≤ ∑ i ∈𝒯 c ∩Ω c ℓ i + max ∀Ω ⊆ [ N ] r 1 ℓ 1 𝒯⊆ [ N ] 1 D S ∑ λ 𝒯 = 1, λ 𝒯 ≥ 0, ∀𝒯 ⊆ [ N ] 𝒯⊆ [ N ] 11

  12. Approximate Capacity of One Relay Network C ( 𝒪 ) = max t λ λ 𝒯 ( max Ω = ∅ i ∈𝒯∩Ω r i ) 𝗍 . 𝗎 . t ≤ ∑ i ∈𝒯 c ∩Ω c ℓ i + max ∀Ω ⊆ [ N ] r 1 ℓ 1 𝒯⊆ [ N ] 1 D S ∑ λ 𝒯 = 1, λ 𝒯 ≥ 0, ∀𝒯 ⊆ [ N ] 𝒯⊆ [ N ] Ω = ∅ t ≤ λ ∅ . ℓ 1 + λ {1} .0 12

  13. Approximate Capacity of One Relay Network C ( 𝒪 ) = max t λ λ 𝒯 ( max Ω = {1} Ω = ∅ i ∈𝒯∩Ω r i ) 𝗍 . 𝗎 . t ≤ ∑ i ∈𝒯 c ∩Ω c ℓ i + max ∀Ω ⊆ [ N ] r 1 ℓ 1 𝒯⊆ [ N ] 1 D S ∑ λ 𝒯 = 1, λ 𝒯 ≥ 0, ∀𝒯 ⊆ [ N ] 𝒯⊆ [ N ] Ω = ∅ t ≤ λ ∅ . ℓ 1 + λ {1} .0 Ω = {1} t ≤ λ ∅ .0 + λ {1} . r 1 13

  14. Approximate Capacity of One Relay Network C ( 𝒪 ) = max t λ λ 𝒯 ( max Ω = {1} Ω = ∅ i ∈𝒯∩Ω r i ) 𝗍 . 𝗎 . t ≤ ∑ i ∈𝒯 c ∩Ω c ℓ i + max ∀Ω ⊆ [ N ] r 1 ℓ 1 𝒯⊆ [ N ] 1 D S ∑ λ 𝒯 = 1, λ 𝒯 ≥ 0, ∀𝒯 ⊆ [ N ] 𝒯⊆ [ N ] 𝖣 = max t λ Ω = ∅ t ≤ λ ∅ . ℓ 1 + λ {1} .0 Ω = {1} t ≤ λ ∅ .0 + λ {1} . r 1 λ ∅ + λ {1} = 1, λ ∅ , λ {1} ≥ 0 14

  15. Approximate Capacity of One Relay Network C ( 𝒪 ) = max t λ λ 𝒯 ( max Ω = {1} Ω = ∅ i ∈𝒯∩Ω r i ) 𝗍 . 𝗎 . t ≤ ∑ i ∈𝒯 c ∩Ω c ℓ i + max ∀Ω ⊆ [ N ] r 1 ℓ 1 𝒯⊆ [ N ] 1 D S ∑ λ 𝒯 = 1, λ 𝒯 ≥ 0, ∀𝒯 ⊆ [ N ] 𝒯⊆ [ N ] 𝖣 = max t λ ℓ 1 r 1 Ω = ∅ t ≤ λ ∅ . ℓ 1 + λ {1} .0 C = ℓ 1 + r 1 Ω = {1} t ≤ λ ∅ .0 + λ {1} . r 1 λ ∅ + λ {1} = 1, λ ∅ , λ {1} ≥ 0 15

  16. Goal: Find the fraction of approximate capacity guaranteed by a single relay in an N-relay half-duplex diamond network 1 r 1 ℓ 1 r 2 2 ℓ 2 S D r i ℓ i i r N ℓ N N 𝒪 = {( ℓ j , r j ), j ∈ [1 : N ]} Approximate Capacity = C ( 𝒪 ) 16

  17. Goal: Find the fraction of approximate capacity guaranteed by a single relay in an N-relay half-duplex diamond network 1 r 1 ℓ 1 r 2 2 ℓ 2 S D S D r i r i ℓ i ℓ i i i r N ℓ N 𝒪 i = {( ℓ i , r i )} N ℓ i r i C ( 𝒪 i ) = 𝒪 = {( ℓ j , r j ), j ∈ [1 : N ]} ℓ i + r i Approximate Capacity = C ( 𝒪 ) 17

  18. Goal: Find the fraction of approximate capacity guaranteed by a single relay in an N-relay half-duplex diamond network 1 r 1 ℓ 1 C ( 𝒪 i ) C ( 𝒪 ) r 2 2 ℓ 2 S D S D r i r i ℓ i ℓ i i i r N ℓ N 𝒪 i = {( ℓ i , r i )} N ℓ i r i C ( 𝒪 i ) = 𝒪 = {( ℓ j , r j ), j ∈ [1 : N ]} ℓ i + r i Approximate Capacity = C ( 𝒪 ) 18

  19. Goal: Find the fraction of approximate capacity guaranteed by a single relay in an N-relay half-duplex diamond network 1 r 1 ℓ 1 C ( 𝒪 i ) C ( 𝒪 ) r 2 2 ℓ 2 S D S D r i r i ℓ i ℓ i max i C ( 𝒪 i ) i i r N ℓ N C ( 𝒪 ) 𝒪 i = {( ℓ i , r i )} N ℓ i r i C ( 𝒪 i ) = 𝒪 = {( ℓ j , r j ), j ∈ [1 : N ]} ℓ i + r i Approximate Capacity = C ( 𝒪 ) 19

  20. Goal: Find the fraction of approximate capacity guaranteed by a single relay in an N-relay half-duplex diamond network 1 r 1 ℓ 1 C ( 𝒪 i ) C ( 𝒪 ) r 2 2 ℓ 2 S D S D r i r i ℓ i ℓ i max i C ( 𝒪 i ) i i r N ℓ N C ( 𝒪 ) 𝒪 i = {( ℓ i , r i )} N max i C ( 𝒪 i ) min ℓ i r i C ( 𝒪 ) 𝒪 C ( 𝒪 i ) = 𝒪 = {( ℓ j , r j ), j ∈ [1 : N ]} ℓ i + r i Approximate Capacity = C ( 𝒪 ) 20

  21. Theorem 1: Minimal Ratio: max i C ( 𝒪 i ) C ( 𝒪 ) For any half-duplex diamond N-relay network 𝒪 with approximate capacity C ( 𝒪 ), the best relay has an approximate capacity such that max i C ( 𝒪 i ) 1 ≥ 2 + 2 cos ( N + 2 ) C ( 𝒪 ) 2 π Tightness: Moreover, this bound is tight, i.e., for any positive integer N , there exist Gaussian half-duplex diamond N − relay networks 𝒪 for which the bound is tight. 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend