on the complexity of bounded time reachability
play

On The Complexity of Bounded Time Reachability for Piecewise Affine - PowerPoint PPT Presentation

On The Complexity of Bounded Time Reachability for Piecewise Affine Systems H. Bazille 3 O. Bournez 1 W. Gomaa 2 , 4 A. Pouly 1 1 cole Polytechnique, LIX, 91128 Palaiseau Cedex, France 2 Egypt Japan University of Science and Technology, CSE,


  1. Example Trajectory Function f [ 5 ] ( x ) f [ 3 ] ( x ) f [ 4 ] ( x ) � if x ∈ [ 0 , 1 2 x 2 ] x 0 f [ 2 ] ( x ) 1 1 f ( x ) f ( x ) = 2 if x ∈ [ 1 2 − 2 x 2 , 1 ] x = 0 . 5625 1 f ( x ) = 0 . 875 0 . 8 f [ 2 ] ( x ) = 0 . 25 0 . 6 0 . 4 f [ 3 ] ( x ) = 0 . 5 0 . 2 f [ 4 ] ( x ) = 1 0 0 0 . 2 0 . 4 0 . 6 0 . 8 1 f [ n ] ( x ) = 0 n � 5 Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 3 / 17

  2. Example Function Trajectory � if x ∈ [ 0 , 1 2 x f [ 5 ] ( x ) f [ 3 ] ( x ) f [ 4 ] ( x ) 2 ] f ( x ) = if x ∈ [ 1 2 − 2 x 2 , 1 ] x 0 f [ 2 ] ( x ) 1 1 f ( x ) 2 1 0 . 8 x = 0 . 5625 0 . 6 f ( x ) = 0 . 875 0 . 4 f [ 2 ] ( x ) = 0 . 25 0 . 2 f [ 3 ] ( x ) = 0 . 5 0 0 0 . 2 0 . 4 0 . 6 0 . 8 1 f [ 4 ] ( x ) = 1 Remark f [ n ] ( x ) = 0 n � 5 Trajectory depends on the bi- nary expansion of x Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 3 / 17

  3. Existings Results Problem: REACH-REGION Input: f : [ 0 , 1 ] d → [ 0 , 1 ] d continuous, piecewise affine Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 4 / 17

  4. Existings Results Problem: REACH-REGION Input: f : [ 0 , 1 ] d → [ 0 , 1 ] d continuous, piecewise affine Input: R 0 , R : convex regions of [ 0 , 1 ] d Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 4 / 17

  5. Existings Results Problem: REACH-REGION Input: f : [ 0 , 1 ] d → [ 0 , 1 ] d continuous, piecewise affine Input: R 0 , R : convex regions of [ 0 , 1 ] d Question: ∃ x ∈ R 0 , ∃ t ∈ N , f [ t ] ( x ) ∈ R ? Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 4 / 17

  6. Existings Results Problem: REACH-REGION Input: f : [ 0 , 1 ] d → [ 0 , 1 ] d continuous, piecewise affine Input: R 0 , R : convex regions of [ 0 , 1 ] d Question: ∃ x ∈ R 0 , ∃ t ∈ N , f [ t ] ( x ) ∈ R ? Example f ( x ) f [ 3 ] ( x ) R x R 0 f [ 2 ] ( x ) Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 4 / 17

  7. Existings Results Problem: REACH-REGION Input: f : [ 0 , 1 ] d → [ 0 , 1 ] d continuous, piecewise affine Input: R 0 , R : convex regions of [ 0 , 1 ] d Question: ∃ x ∈ R 0 , ∃ t ∈ N , f [ t ] ( x ) ∈ R ? Example Theorem (Koiran, Cosnard, Garzon) f ( x ) f [ 3 ] ( x ) REACH-REGION is undecidable for d � 2 R x R 0 f [ 2 ] ( x ) Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 4 / 17

  8. Existings Results Problem: REACH-REGION Input: f : [ 0 , 1 ] d → [ 0 , 1 ] d continuous, piecewise affine Input: R 0 , R : convex regions of [ 0 , 1 ] d Question: ∃ x ∈ R 0 , ∃ t ∈ N , f [ t ] ( x ) ∈ R ? Example Theorem (Koiran, Cosnard, Garzon) f ( x ) f [ 3 ] ( x ) REACH-REGION is undecidable for d � 2 R Proof (Idea) Simulate a Turing Machine and re- x duce from halting problem. R 0 f [ 2 ] ( x ) Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 4 / 17

  9. Existings Results Problem: REACH-REGION Input: f : [ 0 , 1 ] d → [ 0 , 1 ] d continuous, piecewise affine Input: R 0 , R : convex regions of [ 0 , 1 ] d Question: ∃ x ∈ R 0 , ∃ t ∈ N , f [ t ] ( x ) ∈ R ? Example Theorem (Koiran, Cosnard, Garzon) f ( x ) f [ 3 ] ( x ) REACH-REGION is undecidable for d � 2 R Proof (Idea) Simulate a Turing Machine and re- x duce from halting problem. R 0 Open Problem f [ 2 ] ( x ) Decidability for d = 1. Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 4 / 17

  10. Existings Results Problem: CONTROL-REGION Input: f : [ 0 , 1 ] d → [ 0 , 1 ] d continuous, piecewise affine Input: R 0 , R : convex regions of [ 0 , 1 ] d Question: ∀ x ∈ R 0 , ∃ t ∈ N , f [ t ] ( x ) ∈ R ? Example Theorem (Blondel, Bournez, Koiran, Tsitsiklis) f ( x ) f [ 3 ] ( x ) is undecidable CONTROL-REGION R for d � 2 Proof (Idea) Harder simulation of a Turing Ma- x chine R 0 Open Problem f [ 2 ] ( x ) Decidability for d = 1. Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 4 / 17

  11. Our Results Problem: REACH-REGION-TIME Input: f : [ 0 , 1 ] d → [ 0 , 1 ] d continuous, piecewise affine Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 5 / 17

  12. Our Results Problem: REACH-REGION-TIME Input: f : [ 0 , 1 ] d → [ 0 , 1 ] d continuous, piecewise affine Input: R 0 , R : convex regions of [ 0 , 1 ] d , T ∈ N in unary Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 5 / 17

  13. Our Results Problem: REACH-REGION-TIME Input: f : [ 0 , 1 ] d → [ 0 , 1 ] d continuous, piecewise affine Input: R 0 , R : convex regions of [ 0 , 1 ] d , T ∈ N in unary Question: ∃ x ∈ R 0 , ∃ t � T , f [ t ] ( x ) ∈ R ? Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 5 / 17

  14. Our Results Problem: REACH-REGION-TIME Input: f : [ 0 , 1 ] d → [ 0 , 1 ] d continuous, piecewise affine Input: R 0 , R : convex regions of [ 0 , 1 ] d , T ∈ N in unary Question: ∃ x ∈ R 0 , ∃ t � T , f [ t ] ( x ) ∈ R ? Theorem REACH-REGION-TIME is NP-complete for d � 2 Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 5 / 17

  15. Our Results Problem: REACH-REGION-TIME Input: f : [ 0 , 1 ] d → [ 0 , 1 ] d continuous, piecewise affine Input: R 0 , R : convex regions of [ 0 , 1 ] d , T ∈ N in unary Question: ∃ x ∈ R 0 , ∃ t � T , f [ t ] ( x ) ∈ R ? Theorem REACH-REGION-TIME is NP-complete for d � 2 Open Problem Complexity for d = 1. Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 5 / 17

  16. Our Results Problem: CONTROL-REGION-TIME Input: f : [ 0 , 1 ] d → [ 0 , 1 ] d continuous, piecewise affine Input: R 0 , R : convex regions of [ 0 , 1 ] d , T ∈ N in unary Question: ∀ x ∈ R 0 , ∃ t � T , f [ t ] ( x ) ∈ R ? Theorem CONTROL-REGION-TIME is coNP-complete for d � 2 Open Problem Complexity for d = 1. Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 5 / 17

  17. Statement Problem: REACH-REGION-TIME Input: f : [ 0 , 1 ] d → [ 0 , 1 ] d continuous, piecewise affine Input: R 0 , R : convex regions of [ 0 , 1 ] d , T ∈ N in unary Question: ∃ x ∈ R 0 , ∃ t � T , f [ t ] ( x ) ∈ R ? Theorem REACH-REGION-TIME is in NP . Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 6 / 17

  18. Signature Example R 1 Definition R 3 R 2 The signature σ ( x ) ∈ { 0 , . . . , n } N of x is defined by: f [ i ] ( x ) ∈ R j σ i ( x ) = j ⇔ R 0 R 4 R 5 Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 7 / 17

  19. Signature Example R 1 R 3 R 2 Definition The signature σ ( x ) ∈ { 0 , . . . , n } N of x is defined by: x f [ i ] ( x ) ∈ R j R 0 R 4 σ i ( x ) = j ⇔ R 5 σ ( x ) = ( 0 , . . . ) Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 7 / 17

  20. Signature Example f ( x ) R 1 R 3 R 2 Definition The signature σ ( x ) ∈ { 0 , . . . , n } N of x is defined by: x f [ i ] ( x ) ∈ R j R 0 R 4 σ i ( x ) = j ⇔ R 5 σ ( x ) = ( 0 , 1 , . . . ) Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 7 / 17

  21. Signature Example f ( x ) R 1 R 3 R 2 Definition The signature σ ( x ) ∈ { 0 , . . . , n } N of x is defined by: x f [ i ] ( x ) ∈ R j R 0 R 4 σ i ( x ) = j ⇔ f [ 2 ] ( x ) R 5 σ ( x ) = ( 0 , 1 , 4 , . . . ) Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 7 / 17

  22. Signature Example f ( x ) f [ 3 ] ( x ) R 1 R 3 R 2 Definition The signature σ ( x ) ∈ { 0 , . . . , n } N of x is defined by: x f [ i ] ( x ) ∈ R j R 0 R 4 σ i ( x ) = j ⇔ f [ 2 ] ( x ) R 5 σ ( x ) = ( 0 , 1 , 4 , 3 , . . . ) Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 7 / 17

  23. Signature Example Definition The signature σ ( x ) ∈ { 0 , . . . , n } N of f ( x ) f [ 3 ] ( x ) x is defined by: R 1 R 3 R 2 f [ i ] ( x ) ∈ R j σ i ( x ) = j ⇔ Lemma x If σ ( x ) = ( r 1 , r 2 , . . . , r t , . . . ) then R 0 R 4 f [ t ] ( x ) = A r t ( · · · ( A r 1 x + b r 1 ) · · · ) + b r t f [ 2 ] ( x ) = C σ + d σ R 5 σ ( x ) = ( 0 , 1 , 4 , 3 , . . . ) Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 7 / 17

  24. Signature Definition Example The signature σ ( x ) ∈ { 0 , . . . , n } N of f ( x ) f [ 3 ] ( x ) x is defined by: R 1 f [ i ] ( x ) ∈ R j R 3 σ i ( x ) = j ⇔ R 2 Lemma If σ ( x ) = ( r 1 , r 2 , . . . , r t , . . . ) then x f [ t ] ( x ) = A r t ( · · · ( A r 1 x + b r 1 ) · · · ) + b r t R 0 R 4 = C σ + d σ f [ 2 ] ( x ) R 5 Furthermore ( s ( X ) = coeff size): s ( C σ , d σ ) = poly ( s ( A ) , s ( b ) , t ) σ ( x ) = ( 0 , 1 , 4 , 3 , . . . ) Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 7 / 17

  25. Algorithm Given f , R 0 , R = R n and T : Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 8 / 17

  26. Algorithm Given f , R 0 , R = R n and T : Guess t � T ← Nondeterministic polynomial Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 8 / 17

  27. Algorithm Given f , R 0 , R = R n and T : Guess t � T ← Nondeterministic polynomial Guess signature r 1 , . . . , r t − 1 ← Nondeterministic polynomial Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 8 / 17

  28. Algorithm Given f , R 0 , R = R n and T : Guess t � T ← Nondeterministic polynomial Guess signature r 1 , . . . , r t − 1 ← Nondeterministic polynomial Guess x ∈ Q d of polynomial size ← Nondeterministic polynomial Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 8 / 17

  29. Algorithm Given f , R 0 , R = R n and T : Guess t � T ← Nondeterministic polynomial Guess signature r 1 , . . . , r t − 1 ← Nondeterministic polynomial Guess x ∈ Q d of polynomial size ← Nondeterministic polynomial Check that f [ i ] ( x ) ∈ R r i for all i ∈ { 0 , . . . , t } : Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 8 / 17

  30. Algorithm Given f , R 0 , R = R n and T : Guess t � T ← Nondeterministic polynomial Guess signature r 1 , . . . , r t − 1 ← Nondeterministic polynomial Guess x ∈ Q d of polynomial size ← Nondeterministic polynomial Check that f [ i ] ( x ) ∈ R r i for all i ∈ { 0 , . . . , t } : f [ i ] ( x ) ∈ R r i ⇔ M r i ( C i x + d i ) � v i ← Polynomial size Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 8 / 17

  31. Algorithm Given f , R 0 , R = R n and T : Guess t � T ← Nondeterministic polynomial Guess signature r 1 , . . . , r t − 1 ← Nondeterministic polynomial Guess x ∈ Q d of polynomial size ← Nondeterministic polynomial Check that f [ i ] ( x ) ∈ R r i for all i ∈ { 0 , . . . , t } : f [ i ] ( x ) ∈ R r i ⇔ M r i ( C i x + d i ) � v i ← Polynomial size Accept if all systems are satisfied Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 8 / 17

  32. Algorithm Given f , R 0 , R = R n and T : Guess t � T ← Nondeterministic polynomial Guess signature r 1 , . . . , r t − 1 ← Nondeterministic polynomial Guess x ∈ Q d of polynomial size ← Nondeterministic polynomial Check that f [ i ] ( x ) ∈ R r i for all i ∈ { 0 , . . . , t } : f [ i ] ( x ) ∈ R r i ⇔ M r i ( C i x + d i ) � v i ← Polynomial size Accept if all systems are satisfied Theorem (Koiran) Every satisfiable rational linear system Ax � b has a rational solution of polynomial size. Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 8 / 17

  33. Statement Problem: REACH-REGION-TIME Input: f : [ 0 , 1 ] d → [ 0 , 1 ] d continuous, piecewise affine Input: R 0 , R : convex regions of [ 0 , 1 ] d , T ∈ N in unary Question: ∃ x ∈ R 0 , ∃ t � T , f [ t ] ( x ) ∈ R ? Theorem REACH-REGION-TIME is NP-hard for d � 2. Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 9 / 17

  34. General idea Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 10 / 17

  35. General idea Consider L a NP-hard problem Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 10 / 17

  36. General idea Consider L a NP-hard problem Consider L ′ in P such that: x | ∃ y , | y | � poly ( | x | ) and ( x , y ) ∈ L ′ � � L = Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 10 / 17

  37. General idea Consider L a NP-hard problem Consider L ′ in P such that: x | ∃ y , | y | � poly ( | x | ) and ( x , y ) ∈ L ′ � � L = Define f a piecewise affine function which simulates L ′ : Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 10 / 17

  38. General idea Consider L a NP-hard problem ψ = encoding function Consider L ′ in P such that: x | ∃ y , | y | � poly ( | x | ) and ( x , y ) ∈ L ′ � � L = Define f a piecewise affine function which simulates L ′ : ( x , y ) ∈ L ′ ⇔ ∃ t � poly ( | x | , | y | ) , f [ t ] ( ψ ( x , y )) ∈ R Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 10 / 17

  39. General idea Consider L a NP-hard problem ψ = encoding function Consider L ′ in P such that: x | ∃ y , | y | � poly ( | x | ) and ( x , y ) ∈ L ′ � � L = Define f a piecewise affine function which simulates L ′ : ( x , y ) ∈ L ′ ⇔ ∃ t � poly ( | x | , | y | ) , f [ t ] ( ψ ( x , y )) ∈ R Define region R x = � ψ ( x , y ) | | y | � poly ( | x | ) � Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 10 / 17

  40. General idea Consider L a NP-hard problem ψ = encoding function Consider L ′ in P such that: x | ∃ y , | y | � poly ( | x | ) and ( x , y ) ∈ L ′ � � L = Define f a piecewise affine function which simulates L ′ : ( x , y ) ∈ L ′ ⇔ ∃ t � poly ( | x | , | y | ) , f [ t ] ( ψ ( x , y )) ∈ R Define region R x = � ψ ( x , y ) | | y | � poly ( | x | ) � Reduce L to REACH-REGION-TIME : x ∈ L ⇔ ∃ t � poly ( | x | ) , ∃ u ∈ R x , f [ t ] ( u ) ∈ R Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 10 / 17

  41. General idea Consider L a NP-hard problem ψ = encoding function Consider L ′ in P such that: x | ∃ y , | y | � poly ( | x | ) and ( x , y ) ∈ L ′ � � L = Define f a piecewise affine function which simulates L ′ : ( x , y ) ∈ L ′ ⇔ ∃ t � poly ( | x | , | y | ) , f [ t ] ( ψ ( x , y )) ∈ R Define region R x = � ψ ( x , y ) | | y | � poly ( | x | ) � Reduce L to REACH-REGION-TIME : x ∈ L ⇔ ∃ t � poly ( | x | ) , ∃ u ∈ ˜ R x , f [ t ] ( u ) ∈ R Tricky points R x is not a convex polyhedron: replace it with its convex hull ˜ R x Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 10 / 17

  42. General idea Consider L a NP-hard problem ψ = encoding function Consider L ′ in P such that: x | ∃ y , | y | � poly ( | x | ) and ( x , y ) ∈ L ′ � � L = Define f a piecewise affine function which simulates L ′ : ( x , y ) ∈ L ′ ⇔ ∃ t � poly ( | x | , | y | ) , f [ t ] ( ψ ( x , y )) ∈ R Define region R x = � ψ ( x , y ) | | y | � poly ( | x | ) � Reduce L to REACH-REGION-TIME : x ∈ L ⇔ ∃ t � poly ( | x | ) , ∃ u ∈ ˜ R x , f [ t ] ( u ) ∈ R Tricky points R x is not a convex polyhedron: replace it with its convex hull ˜ R x Choice of L ? Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 10 / 17

  43. More on tricky points ˜ R x = { initial configuration } R x = convex hull of R x Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 11 / 17

  44. More on tricky points ˜ R x = { initial configuration } R x = convex hull of R x Problem ˜ R x \ R x contains bizarre points Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 11 / 17

  45. More on tricky points ˜ R x = { initial configuration } R x = convex hull of R x Problem ˜ R x \ R x contains bizarre points Example Take u ∈ ˜ R x \ R x , assume x / ∈ L Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 11 / 17

  46. More on tricky points ˜ R x = { initial configuration } R x = convex hull of R x Problem ˜ R x \ R x contains bizarre points Example Take u ∈ ˜ R x \ R x , assume x / ∈ L u � = ψ ( x , y ) for all x , y → point normally inacessible Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 11 / 17

  47. More on tricky points ˜ R x = { initial configuration } R x = convex hull of R x Problem ˜ R x \ R x contains bizarre points Example Take u ∈ ˜ R x \ R x , assume x / ∈ L u � = ψ ( x , y ) for all x , y → point normally inacessible f ( u ) may be uncontrolled Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 11 / 17

  48. More on tricky points ˜ R x = { initial configuration } R x = convex hull of R x Problem ˜ R x \ R x contains bizarre points Example Take u ∈ ˜ R x \ R x , assume x / ∈ L u � = ψ ( x , y ) for all x , y → point normally inacessible f ( u ) may be uncontrolled if ∃ t , f [ t ] ( u ) ∈ R , system wrongly accepts x Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 11 / 17

  49. More on tricky points ˜ R x = { initial configuration } R x = convex hull of R x Problem ˜ R x \ R x contains bizarre points Example Take u ∈ ˜ R x \ R x , assume x / ∈ L u � = ψ ( x , y ) for all x , y → point normally inacessible f ( u ) may be uncontrolled if ∃ t , f [ t ] ( u ) ∈ R , system wrongly accepts x So what ? The simulation of L ′ has to be studied for bizarre points too Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 11 / 17

  50. More on tricky points ˜ R x = { initial configuration } R x = convex hull of R x Problem ˜ R x \ R x contains bizarre points Example Take u ∈ ˜ R x \ R x , assume x / ∈ L u � = ψ ( x , y ) for all x , y → point normally inacessible f ( u ) may be uncontrolled if ∃ t , f [ t ] ( u ) ∈ R , system wrongly accepts x So what ? The simulation of L ′ has to be studied for bizarre points too This is difficult for most languages Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 11 / 17

  51. And the winner is... Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 12 / 17

  52. And the winner is... Problem SUBSEM-SUM Input: a goal B ∈ N and integers A 1 , . . . , A n ∈ N Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 12 / 17

  53. And the winner is... Problem SUBSEM-SUM Input: a goal B ∈ N and integers A 1 , . . . , A n ∈ N Question: ∃ I ⊆ { 1 , . . . , n } , � i ∈ I A i = B ? Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 12 / 17

  54. And the winner is... Problem SUBSEM-SUM Input: a goal B ∈ N and integers A 1 , . . . , A n ∈ N Question: ∃ I ⊆ { 1 , . . . , n } , � i ∈ I A i = B ? Simulation (1) i ∈ { 1 , . . . , n + 1 } , ε i ∈ { 0 , 1 } Configuration: ( i , σ, ε i , . . . , ε n ) Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 12 / 17

  55. And the winner is... Problem SUBSEM-SUM Input: a goal B ∈ N and integers A 1 , . . . , A n ∈ N Question: ∃ I ⊆ { 1 , . . . , n } , � i ∈ I A i = B ? Simulation (1) i ∈ { 1 , . . . , n + 1 } , ε i ∈ { 0 , 1 } Configuration: ( i , σ, ε i , . . . , ε n ) i = current number σ = current sum ε i = pick A i ? Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 12 / 17

  56. And the winner is... Problem SUBSEM-SUM Input: a goal B ∈ N and integers A 1 , . . . , A n ∈ N Question: ∃ I ⊆ { 1 , . . . , n } , � i ∈ I A i = B ? Simulation (1) i ∈ { 1 , . . . , n + 1 } , ε i ∈ { 0 , 1 } Configuration: ( i , σ, ε i , . . . , ε n ) i = current number σ = current sum ε i = pick A i ? Transition: ( i , σ, ε 1 , . . . , ε n ) � ( i + 1 , σ + ε i A i , ε i + 1 , . . . , ε n ) Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 12 / 17

  57. And the winner is... Problem SUBSEM-SUM Input: a goal B ∈ N and integers A 1 , . . . , A n ∈ N Question: ∃ I ⊆ { 1 , . . . , n } , � i ∈ I A i = B ? Simulation (1) i ∈ { 1 , . . . , n + 1 } , ε i ∈ { 0 , 1 } Configuration: ( i , σ, ε i , . . . , ε n ) i = current number σ = current sum ε i = pick A i ? Transition: ( i , σ, ε 1 , . . . , ε n ) � ( i + 1 , σ + ε i A i , ε i + 1 , . . . , ε n ) Simulation lemma (1) Instance is satisfiable ⇔ ∃ ε 1 , . . . ε n ∈ { 0 , 1 } such that ( 1 , 0 , ε 1 , . . . , ε n ) � n ( n + 1 , B ) Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 12 / 17

  58. Tell me more... Why SUBSET-SUM ? Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 13 / 17

  59. Tell me more... Why SUBSET-SUM ? Configuration encoding: c = ( i , σ, ε i , . . . , ε n ) Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 13 / 17

  60. Tell me more... Why SUBSET-SUM ? Configuration encoding: c = ( i , σ, ε i , . . . , ε n )   σ  0 . i ψ ( c ) =  0 . 0 . . . ε i . . . ε n Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 13 / 17

  61. Tell me more... Why SUBSET-SUM ? Configuration encoding: c = ( i , σ, ε i , . . . , ε n )   σ i 2 − p + σ 2 − q  0 . i � �  = ψ ( c ) = ε i 2 − 1 + ε i + 1 2 − 2 + · · · 0 . 0 . . . ε i . . . ε n Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 13 / 17

  62. Tell me more... Why SUBSET-SUM ? Configuration encoding: c = ( i , σ, ε i , . . . , ε n )   σ i 2 − p + σ 2 − q  0 . i � �  = ψ ( c ) = ε i 2 − 1 + ε i + 1 2 − 2 + · · · 0 . 0 . . . ε i . . . ε n Transitions: ψ ( c ) � ψ ( c ′ ) Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 13 / 17

  63. Tell me more... Why SUBSET-SUM ? Configuration encoding: c = ( i , σ, ε i , . . . , ε n )   σ i 2 − p + σ 2 − q  0 . i � �  = ψ ( c ) = ε i 2 − 1 + ε i + 1 2 − 2 + · · · 0 . 0 . . . ε i . . . ε n Transitions: ψ ( c ) � ψ ( c ′ )   σ  0 . i • ε i = 0 :  � 0 . 0 . . . 0 ε i + 1 . . . ε n Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 13 / 17

  64. Tell me more... Why SUBSET-SUM ? Configuration encoding: c = ( i , σ, ε i , . . . , ε n )   σ i 2 − p + σ 2 − q  0 . i � �  = ψ ( c ) = ε i 2 − 1 + ε i + 1 2 − 2 + · · · 0 . 0 . . . ε i . . . ε n Transitions: ψ ( c ) � ψ ( c ′ )     σ i + 1 σ  0 . i  0 . • ε i = 0 :  � 0 . 0 . . . 0 ε i + 1 . . . ε n 0 . 0 . . . 0 ε i + 1 . . . ε n  Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 13 / 17

  65. Tell me more... Why SUBSET-SUM ? Configuration encoding: c = ( i , σ, ε i , . . . , ε n )   σ i 2 − p + σ 2 − q  0 . i � �  = ψ ( c ) = ε i 2 − 1 + ε i + 1 2 − 2 + · · · 0 . 0 . . . ε i . . . ε n Transitions: ψ ( c ) � ψ ( c ′ )     σ i + 1 σ  0 . i  0 . • ε i = 0 :  � 0 . 0 . . . 0 ε i + 1 . . . ε n 0 . 0 . . . 0 ε i + 1 . . . ε n    σ  0 . i • ε i = 1 :  � 0 . 0 . . . 1 ε i + 1 . . . ε n Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 13 / 17

  66. Tell me more... Why SUBSET-SUM ? Configuration encoding: c = ( i , σ, ε i , . . . , ε n )   σ i 2 − p + σ 2 − q  0 . i � �  = ψ ( c ) = ε i 2 − 1 + ε i + 1 2 − 2 + · · · 0 . 0 . . . ε i . . . ε n Transitions: ψ ( c ) � ψ ( c ′ )     σ i + 1 σ  0 . i  0 . • ε i = 0 :  � 0 . 0 . . . 0 ε i + 1 . . . ε n 0 . 0 . . . 0 ε i + 1 . . . ε n      i + 1 σ σ + A i  0 . i  0 . • ε i = 1 :  � 0 . 0 . . . 1 ε i + 1 . . . ε n 0 . 0 . . . 0 ε i + 1 . . . ε n  Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 13 / 17

  67. And then were the regions...   σ  0 . i ψ ( c ) =  0 . 0 . . . ε i . . . ε n Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 14 / 17

  68. And then were the regions...   σ  0 . i ψ ( c ) =  0 . 0 . . . ε i . . . ε n 2 − i + 1 ε i = 1 R i , 1 R i , 0 ε i = 0 0 0 1 i Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 14 / 17

  69. And then were the regions...   σ  0 . i ψ ( c ) =  0 . 0 . . . ε i . . . ε n 2 − i + 1 Transition on R i , 0 R i , 1 ε i = 1 � x + 2 − p � x � � f = y y R i , 0 ε i = 0 0 0 1 i + 1 i Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 14 / 17

  70. And then were the regions...   σ  0 . i ψ ( c ) =  0 . 0 . . . ε i . . . ε n Transition on R i , 0 2 − i + 1 � x + 2 − p � x � � f = y y R i , 1 ε i = 1 Transition on R i , 1 � x + 2 − p + A i 2 − q � x � � f = y − 2 − i y R i , 0 ε i = 0 0 0 1 i + 1 i Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 14 / 17

  71. And then were the regions...   σ  0 . i ψ ( c ) = Transition on R i , 0  0 . 0 . . . ε i . . . ε n � x + 2 − p � x � � 2 − i + 1 f = y y R i , 1 Transition on R i , 1 ε i = 1 � x + 2 − p + A i 2 − q � x � � f = y − 2 − i y But this doesn’t work, right ? R i , 0 ε i = 0 f is not continuous 0 0 1 i + 1 i Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 14 / 17

  72. Ok, the actual proof is slightly more complicated... 1 R 0 R 1 R 2 0 0 1 R n + 1 Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 15 / 17

  73. ...horribly more complicated β − i + 1 i , 1 ⋆ : (( i + 1 ) 2 − p +( B + 1 ) 2 − q , R lin i , 1 ⋆ :( a + 2 − p + A i 2 − q , b − 1 ⋆ β − i ) Rsat b − 1 ⋆β − i ) 4 β − i R sat i , 3 : ( ⋆ ) i , 3 : ( a + 2 − p + A i 2 − q ( b β i − 3 ) , 0 ) R lin 3 β − i R i , 2 : ( a + 2 − p , 3 β − i − b ) 2 β − i R i , 0 ⋆ : ( a + 2 − p , b − 0 ⋆ β − i ) β − i R i , 0 : ( a + 2 − p , 0 ) 0 i 2 − p + ( B + 1 − A i ) 2 − q i 2 − p + 2 − p − 1 i 2 − p ( ⋆ ):(( i + 1 ) 2 − p + 2 − p − 1 − ( b β i − 3 )( 2 − p − 1 − ( B + 1 ) 2 − q ) , 0 ) Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 16 / 17

  74. Conclusion Reachability in piecewise affine systems: Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 17 / 17

  75. Conclusion Reachability in piecewise affine systems: undecidable for d � 2 Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 17 / 17

  76. Conclusion Reachability in piecewise affine systems: undecidable for d � 2 NP-complete for d � 2 (bounded time variant) Amaury Pouly et al. Complexity of bounded PAF reachability September 23, 2014 17 / 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend