on ratchet cap pricing problems under the levy libor model
play

On ratchet-cap pricing problems under the Levy LIBOR model Hsuan Ku - PowerPoint PPT Presentation

On ratchet-cap pricing problems under the Levy LIBOR model Hsuan Ku Liu Department of Mathematics and Information Education National Taipei University of Education Outline Outline Simple forwards 1 Modelling jump 2 Arbitrage-free dynamics


  1. On ratchet-cap pricing problems under the Levy LIBOR model Hsuan Ku Liu Department of Mathematics and Information Education National Taipei University of Education

  2. Outline Outline Simple forwards 1 Modelling jump 2 Arbitrage-free dynamics 3 The partial integro-differential equations for pricing ratchet 4 caps

  3. Simple forwards Outline Simple forwards 1 Modelling jump 2 Arbitrage-free dynamics 3 The partial integro-differential equations for pricing ratchet 4 caps

  4. Simple forwards Notations δ > 0fixed. L ( t , T ) : the forward rate for the interval from T to T + δ as of time t ≤ T P ( t , T ) : the time-t price of a ZCB maturity at time T , the forward rate satisfies L ( t , T ) = 1 P ( t , T ) δ ( P ( t , T + δ ) − 1 ) f ( t , T ) : the instantaneous forwards of HJM framework satisfies � T + δ L ( t , T ) = 1 δ ( exp { f ( t , s ) ds } − 1 ) T

  5. Modelling jump Outline Simple forwards 1 Modelling jump 2 Arbitrage-free dynamics 3 The partial integro-differential equations for pricing ratchet 4 caps

  6. Modelling jump The jump Process J ( t ) N ( i ) r t H i ( X ( i ) n , τ ( i ) � � J ( t ) = n ) : the jump process i = 1 n = 1 { ( τ ( i ) n , X ( i ) n ) | n = 1 , 2 , . . . } , i = 1 , 2 , . . . , r : the marked point process N ( i ) is the counting process associated with the i-th marked t process H i , i = 1 , 2 , . . . , r : the jump-size function

  7. Modelling jump The random measure µ ( dx , dt ) A marked point process { ( τ n , X n ) } can be described by a random measure µ on the product of the time axis and the mark space: the measure µ assigns unit mass to each point ( τ n , X n ) . This makes it possible to write N ( i ) � t � ∞ t H i ( X ( i ) n , τ ( i ) � n ) = δ i ( x , s ) µ ( dx , ds ) . 0 0 n = 1 For a marked point process in which the points follow a Poission process and marks are i.i.d. random variable.

  8. Modelling jump The intensity has the property that, for all suitably integrable δ i � t � ∞ � t � ∞ δ i ( x , s ) λ ( i ) ( dx , s ) ds δ i ( x , s ) µ i ( dx , s ) ds − 0 0 0 0 is a martingale in t

  9. Modelling jump The intensity takes the form λ ( i ) ( dx , t ) = λ i f i ( x ) dx For the logarithm of the jump sizes to have an asymmetric double distribution, we take the density of the jump size to be f i ( x ) = 1 x p i η 1 , i e − η 1 , i log ( x ) 1 x ≥ 1 + 1 x p i η 2 , i e η 2 , i log ( x ) 1 0 < x < 1

  10. Arbitrage-free dynamics Outline Simple forwards 1 Modelling jump 2 Arbitrage-free dynamics 3 The partial integro-differential equations for pricing ratchet 4 caps

  11. Arbitrage-free dynamics GOAL Define a model of term structure of simple forwards L ( t , T ) to be arbitrage free if it can be embedded in an arbitrage-free model of instantaneous forwards f ( t , T )

  12. Arbitrage-free dynamics Suppose that a bond price is specified through forward rate, ie. for T ∈ R + � T � � P ( t , T ) = exp − f ( t , s ) ds , t ≤ T t where f ( t , T ) is the forward rates of which the dynamics is given by r � df ( t , T ) = α ( t , T ) dt + σ T ( t , T ) · dW t + � δ i ( t , x , T ) µ i ( dt , dx ) R i = 1 Here, W t is a standard wiener process in R n , µ i is a random jump measure with the compensator λ i ( dt , dx ) = F i ( dx ) dt , i = 1 , 2 , ..., r

  13. Arbitrage-free dynamics For all finite t and t ≤ T � T � T t | α ( u , s ) | dsdu < ∞ , 0 � T � T t | σ ( u , s ) | 2 dsdu < ∞ 0 and � T � T � | δ i ( u , x , s ) | 2 ds ν i ( du , dx ) < ∞ , i = 1 , 2 , ..., r 0 R t

  14. Arbitrage-free dynamics It is convenient to extend the definitions of the coefficients by putting them equal to zero for t > T Put � T A ( t , T ) = − α ( t , s ) ds t � T σ ∗ i ( t , T ) = − σ i ( t , s ) ds , i = 1 , 2 , ..., m t σ ∗ ( t , T ) = ( σ ∗ 1 ( t , T ) , ..., σ ∗ m ( t , T )) � T D i ( t , T , α ) = − δ i ( t , x , s ) ds , i = 1 , 2 , ..., r t

  15. Arbitrage-free dynamics Theorem R ( e D i ( t , x , T ) − 1 ) F i ( dx ) < ∞ . The zero couple � Assume that bond (ZCB) price process P ( t , T ) on [ 0 , T ] has the form �� 2 � σ ∗ ( t , T ) � 2 � d P ( t − , T ) r t + A ( t , T ) + 1 dt + σ ∗ ( t , T ) dw t = P ( t , T ) r � R ( e D i ( t , x , T ) − 1 ) µ i ( dt , dx ) � + � i = 1

  16. Arbitrage-free dynamics Proof Let � T Y t = ln P ( t , T ) = − 0 f ( t , s ) ds � t � t 0 σ ∗ ( u , T ) dW u = ln P ( 0 , T ) + 0 A ( u , T ) du + � t � t + � r � R D i ( u , x , T ) µ i ( du , dx ) + 0 r u du . i = 1 0 Then, applying Ito Lemma to P ( t , T ) = P ( 0 , T ) e Y t , we get the theorem.

  17. Arbitrage-free dynamics Girsanov Theorem Let Γ be an m-dimensional predictable process and Ψ = Ψ( w , t , x ) be a strictly positive measurable function such that for finite t � t � t � || Γ s || 2 ds < ∞ , | Ψ( s , x ) | λ ( s , dx ) ds < ∞ . 0 0 R Define � dL t = L t Γ t dW t + L t − (Ψ( t , x ) − 1 ) { µ ( dt , dx ) − ν ( dt , dx ) } , L 0 = 1 , R and suppose that for all finite t E P [ L t ] = 1 .

  18. Arbitrage-free dynamics Then there exists a probability measure Q on F locally equivalent to P with dQ t = L t dP t such that we have dW t = Γ t dt + dW Q t , where W Q lsi a Q -Wiener process. The point process µ has a Q -intensity, given by λ Q ( t , dx ) = Ψ( t , x ) λ ( t , dx ) .

  19. Arbitrage-free dynamics Martingale measure Under the martingale measure Q , the dynamics of bond prices are follows. � d P ( t − , T ) = P ( t , T ) r t dt + σ ∗ ( t , T ) dw Q t � r R ( e D i ( t , x , T ) − 1 )( µ i − ν Q � � + i )( dt , dx ) i − 1

  20. Arbitrage-free dynamics Proof A measure Q is a martingale measure if and only if the bond dynamics under Q is of the form dP ( t , T ) = r t P ( t , T ) dt + dM Q P , where M Q P is a Q -local martingale. Thus, using Girsonov theorem to dP ( t , T ) and comparing with the above equation, we get the theorem.

  21. Arbitrage-free dynamics Remark The forward rate dynamics, under the martingale measure Q , are follows: df ( t , T ) = − σ ( t , T ) σ ∗ ( t , T ) dt + σ ( t , T ) T · dw Q t r R δ i ( t , x , T )( µ i ( dt , dx ) − ν Q � + � i ( dt , dx )) i = 1

  22. Arbitrage-free dynamics 1 The maturity T is restricted to a finite set of dates 0 = T 0 < T 1 < · · · < T M < T M + 1 . 2 Let L n ( t ) = L ( t , T n ) so that L n is the forward rate for the accrual period [ T n , T n + 1 ] . 3 Let P n ( t ) = P ( t , T n ) denote the price of a ZCB maturing at T n .

  23. Arbitrage-free dynamics For each n = 1 , 2 , . . . , M let γ n ( . ) be a bounded, adapted, R d -valued process. Let H ni , i = 1 , 2 , . . . , r be deterministic functions from [ 0 , ∞ ) to [ − 1 , ∞ ) . The model dL n ( t ) L n ( t ) = α n ( t ) dt + γ n ( t ) dw ( t ) + dJ n ( t ) is arbitrage free if

  24. Arbitrage-free dynamics Theorem n δγ k ( t ) T L k ( t ) α n ( t ) = γ n ( t ) ψ 0 ( t ) + γ n ( t ) � 1 + δ L k ( t ) k =[ t ] r n � ∞ 1 + δ L k ( t − ) ( 1 + δ L k ( t − ))( 1 + H ki ( x )) ψ i ( x , t ) λ ( i ) ( dx , t ) − � H ni ( x ) � 0 i = 1 k =[ t ] for some R d -valued process ψ 0 and strictly positive scalar process ψ i ( x , . ) x ∈ ( 0 , ∞ ) , i = 1 , 2 , . . . , r satisfying � t � t 0 || ψ 0 ( s ) || 2 ds < ∞ and 0 ψ i ( s ) λ ( i ) ( dx , s ) ds < ∞ , i = 1 , 2 , . . . , r

  25. Arbitrage-free dynamics Proof For two maturities T and U with T < U , the forward process is defined by F B ( t , T , U ) = P ( t , T ) P ( t , U ) . Let δ > 0, the δ -LIBOR rates are defined by L ( t , T n ) = 1 δ ( F B ( t , T n , T n + 1 ) − 1 ); that is dF B ( t , T n , T n + 1 ) = δ dL ( t , T n ) . Applying Ito Lemma to the above equation, we get the theorem.

  26. Arbitrage-free dynamics Theorem Under the forward measure P M + 1 , if for each n = 1 , 2 , . . . , M we have dL n ( t ) L n ( t ) = α n ( t ) dt + γ n ( t ) dw n + 1 ( t ) + dJ n ( t ) is arbitrage-free if M δγ n ( t ) γ k ( t ) T L k ( t ) α n ( t ) = � 1 + δ L k ( t ) k = n + 1 r M � ∞ λ ( i ) 1 + δ L k ( t − )( 1 + H ki ( x )) � � − H ni ( x ) M + 1 ( dx , t ) 0 1 + δ L k ( t − ) i = 1 k = n + 1

  27. Arbitrage-free dynamics Proof B ( t , T ) Define Z ( t , T ) = 0 r ( s ) ds ) , the the dynamics � t exp ( dZ ( t , T + δ ) = σ ∗ ( t , T + δ ) dW Q Z ( t , T + δ ) � ∞ 0 ( e D ( t , T + δ ) − 1 )( µ i ( dx , dt ) − λ Q + � r i ( dx , t ) dt ) . i = 1 is martingale. Define the measure P T + δ through the likelihood ratio � dP T + δ � = Z ( t , T + δ ) P ( 0 , T + δ ) . dQ Applying Girsanov’s theorem, the intensity of µ ( i ) ( dx , dt ) is given by λ ( i ) T + δ ( dx , t ) = e D ( t , T + δ ) λ ( i ) Q ( dx , t ) and the process W T + δ = dW Q ( t ) + σ ∗ ( t , T + δ ) is a standard Brownian motion.

  28. Arbitrage-free dynamics In this paper, we assume that each LIBOR is affected by the same rare events, that is the dynamics of LIBOR rate is written as N t dL n ( t ) � L n ( t ) = α n ( t ) dt + γ n ( t ) dw n + 1 ( t ) + H n ( X k , τ k ) k = 1

  29. The partial integro-differential equations for pricing ratchet caps Outline Simple forwards 1 Modelling jump 2 Arbitrage-free dynamics 3 The partial integro-differential equations for pricing ratchet 4 caps

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend