on numerical modeling of coupled magnetoelastic problem
play

On numerical modeling of coupled magnetoelastic problem Anouar - PowerPoint PPT Presentation

On numerical modeling of coupled magnetoelastic problem Anouar Belahcen 1 , Katarzyna Fonteyn 1 , Antti Hannukainen 2 and Reijo Kouhia 3 firstname.lastname@tkk.fi Helsinki University of Technology 1 Department of Electrical Engineering 2


  1. On numerical modeling of coupled magnetoelastic problem Anouar Belahcen 1 , Katarzyna Fonteyn 1 , Antti Hannukainen 2 and Reijo Kouhia 3 firstname.lastname@tkk.fi Helsinki University of Technology 1 Department of Electrical Engineering 2 Institute of Mathematics 3 Department of Structural Engineering and Building Technology NSCM-21, Trondheim, October 16-17, 2008 – p.1/10

  2. CONTENTS � Magnetoelasticity � Balance equations � Constitutive model • Helmholtz free energy • Experimental verification � Numerical solution � Finite element procedures • Potential approach • Least-square formulations � Example NSCM-21, Trondheim, October 16-17, 2008 – p.2/10

  3. MAGNETOELASTICITY � Balance equations − div σ = f + f em curl H = J , div B = 0 , div J = 0 NSCM-21, Trondheim, October 16-17, 2008 – p.3/10

  4. MAGNETOELASTICITY � Balance equations − div σ = f + f em curl H = J , div B = 0 , div J = 0 � Constitutive equations B = µ 0 ( H + M ) σ = ρ∂ψ M = − ρ∂ψ ∂ ε , ∂ B NSCM-21, Trondheim, October 16-17, 2008 – p.3/10

  5. MAGNETOELASTICITY � Balance equations − div σ = f + f em curl H = J , div B = 0 , div J = 0 � Constitutive equations B = µ 0 ( H + M ) σ = ρ∂ψ M = − ρ∂ψ ∂ ε , ∂ B τ = σ + µ − 1 0 [ BB − 1 2 ( B · B ) I ] + ( M · B ) I − BM − div τ = f NSCM-21, Trondheim, October 16-17, 2008 – p.3/10

  6. CONSTITUTIVE MODEL - Helmholtz free energy � For isotropic magnetoelastic solid: ψ ( ε , B ) � Integrity basis I 2 = 1 2 tr ε 2 , I 3 = 1 3 tr ε 3 I 1 = tr ε , I 6 = B · ε 2 · B I 4 = B · B , I 5 = B · ε · B , � Suitable choice for ρψ = � 4 � 1 � 2 λI 2 1 1 + 2 GI 2 + 1 i + 1 g i ( I 1 ) I i +1 + 1 2 γ 5 I 5 + 1 2 γ 6 I 6 4 2 i =0 NSCM-21, Trondheim, October 16-17, 2008 – p.4/10

  7. CONSTITUTIVE MODEL - Helmholtz free energy � For isotropic magnetoelastic solid: ψ ( ε , B ) � Integrity basis I 2 = 1 2 tr ε 2 , I 3 = 1 3 tr ε 3 I 1 = tr ε , I 6 = B · ε 2 · B I 4 = B · B , I 5 = B · ε · B , � Suitable choice for ρψ = �� 4 � 2 λI 2 1 1 + 2 GI 2 + 1 i +1 g i ( I 1 ) I i +1 1 + 1 2 γ 5 I 5 + 1 2 γ 6 I 6 i =0 4 2 NSCM-21, Trondheim, October 16-17, 2008 – p.4/10

  8. CONSTITUTIVE MODEL - Helmholtz free energy � For isotropic magnetoelastic solid: ψ ( ε , B ) � Integrity basis I 2 = 1 2 tr ε 2 , I 3 = 1 3 tr ε 3 I 1 = tr ε , I 6 = B · ε 2 · B I 4 = B · B , I 5 = B · ε · B , � Suitable choice for ρψ = � 4 � 1 � 2 λI 2 1 1 + 2 GI 2 + 1 i + 1 g i ( I 1 ) I i +1 + 1 2 γ 5 I 5 + 1 2 γ 6 I 6 4 2 i =0 NSCM-21, Trondheim, October 16-17, 2008 – p.4/10

  9. CONSTITUTIVE MODEL - Helmholtz free energy � For isotropic magnetoelastic solid: ψ ( ε , B ) � Integrity basis I 2 = 1 2 tr ε 2 , I 3 = 1 3 tr ε 3 I 1 = tr ε , I 6 = B · ε 2 · B I 4 = B · B , I 5 = B · ε · B , � Suitable choice for ρψ = � 4 � 1 � 2 λI 2 1 1 + 2 GI 2 + 1 i + 1 g i ( I 1 ) I i +1 + 1 2 γ 5 I 5 + 1 2 γ 6 I 6 4 2 i =0 NSCM-21, Trondheim, October 16-17, 2008 – p.4/10

  10. CONSTITUTIVE MODEL - functions g i ( I 1 ) � Deformation isochoric under pure magnetic excitation = ⇒ g i ( I 1 ) � Result γ 6 = 2 γ 5 g 0 = ( γ (0) + 1 4 µ − 1 0 − 1 4 γ 5 ) exp( 4 3 I 1 ) − 1 4 µ − 1 0 + 1 4 γ 5 4 g i = γ ( i ) 4 exp( 4 3 I 1 ) when i = 1 , . . . , 4 where γ ( i ) 4 = g i (0) are unknown parameters NSCM-21, Trondheim, October 16-17, 2008 – p.5/10

  11. CONSTITUTIVE MODEL - experimental verification Epstein frame (Belahcen 2004) 1–4: load cells 5: screw system for loading NSCM-21, Trondheim, October 16-17, 2008 – p.6/10

  12. CONSTITUTIVE MODEL - experimental verification Magnetization curves ...experimental results, − proposed model 2 1.8 1.6 1.4 1.2 B1 (Tesla) 1 0.8 0.6 0.4 0.2 0 0 2 4 6 8 10 12 14 16 18 H1 (kA/m) NSCM-21, Trondheim, October 16-17, 2008 – p.6/10

  13. CONSTITUTIVE MODEL - experimental verification Magnetostriction different compressive pre-stress 2 - 7 MPa −6 x 10 6 6 5 5 7 4 4 eps 1 : −−− model *** experiments 8 3 3 9 2 2 10 1 1 0 −1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 B1 (Tesla) NSCM-21, Trondheim, October 16-17, 2008 – p.6/10

  14. NUMERICAL SOLUTION - potential approach � Vector potential A , such that B = curl A . � FE-problem: find { A h , p h } ∈ R h 0 × G h 0 0 ⊂ H 1 R h 0 ⊂ H 0 (curl , Ω) and G h 0 (Ω) (curl ˆ A h , H h ) + ( ˆ A h , grad p h ) = ( ˆ A h , J ) − [ ˆ A h , ¯ ∀ ˆ A h ∈ R h H ]; 0 p h ∈ G h (grad ˆ p h , A h ) = 0; ∀ ˆ 0 Magnetic field strength from the constitutive model f 4 = ρ ∂ψ H = ( µ − 1 + 2 f 4 ) B + γ 5 B · ε + γ 6 B · ε 2 , 0 ∂I 4 NSCM-21, Trondheim, October 16-17, 2008 – p.7/10

  15. NUMERICAL SOLUTION - potential approach � Vector potential A , such that B = curl A . � FE-problem: find { A h , p h } ∈ R h 0 × G h 0 0 ⊂ H 1 R h 0 ⊂ H 0 (curl , Ω) and G h 0 (Ω) (curl ˆ A h , H h ) + ( ˆ A h , grad p h ) = ( ˆ A h , J ) − [ ˆ A h , ¯ ∀ ˆ A h ∈ R h H ]; 0 p h ∈ G h (grad ˆ p h , A h ) = 0; ∀ ˆ 0 Magnetic field strength from the constitutive model f 4 = ρ ∂ψ H = ( µ − 1 + 2 f 4 ) B + γ 5 B · ε + γ 6 B · ε 2 , 0 ∂I 4 � Interelement continuity for the tangential component required for fields in H (curl , Ω) � Nedelec edge elements NSCM-21, Trondheim, October 16-17, 2008 – p.7/10

  16. NUMERICAL SOLUTION - least-square approach � B-formulation L B = 1 2 (div B , div B ) − ( p , curl H − J ) FEM: B h ∈ D h p ∈ R h 0 ⊂ H 0 (div , Ω) , 0 ⊂ H 0 (curl , Ω) Continuity for the normal component of B h required Raviart-Thomas elements for B h NSCM-21, Trondheim, October 16-17, 2008 – p.8/10

  17. NUMERICAL SOLUTION - least-square approach � B-formulation L B = 1 2 (div B , div B ) − ( p , curl H − J ) FEM: B h ∈ D h p ∈ R h 0 ⊂ H 0 (div , Ω) , 0 ⊂ H 0 (curl , Ω) Continuity for the normal component of B h required Raviart-Thomas elements for B h � H-formulation L H = 1 2 (curl H − J , curl H − J ) − ( p, div B ) FEM: H h ∈ R h ⊂ H (curl , Ω) , p ∈ G h ⊂ H 1 (Ω) Continuity for the tangential component of H h required Nedelec elements for H h NSCM-21, Trondheim, October 16-17, 2008 – p.8/10

  18. NUMERICAL SOLUTION - least-square approach � Minimizing the error in the constitutive model B = µ H : � � 1 2 | B − µ H | 2 + q div B + p · (curl H − J ) � L BH = dV Ω � Piecewise continuous interpolation for q, p � Penalty approach ⇒ element level elimination of q, p NSCM-21, Trondheim, October 16-17, 2008 – p.9/10

  19. EXAMPLE Plane -strain problem, 36 × 18 bilinear element mesh J 1 J 2 z = 100 A , z = − 100 A , L = 1 m E = 183 . 62 GPa , ν = 0 . 34 , µ 0 = 4 π · 10 − 7 N / A 2 γ (0) 0 , γ (1) 0 , γ (2) = − 0 . 99974858 µ − 1 = 0 . 00076054 µ − 1 = − 0 . 00089881 µ − 1 4 4 4 0 γ (3) 0 , γ (4) = 0 . 00008964 µ − 1 = 0 . 00012688 µ − 1 0 , γ 5 = − 0 . 028 µ − 1 4 4 0 y ✛ ✲ 2 L � ✻ � � � � � � � � � � � ❞ J 1 ❅ J 2 � � L ❅ � � � r ❞ � z z A z = 0 on ∂ Ω � � � � � � � � � � � � ❄ � � ❞ r z x NSCM-21, Trondheim, October 16-17, 2008 – p.10/10

  20. EXAMPLE Magnetic flux density NSCM -21, Trondheim, October 16-17, 2008 – p.10/10

  21. EXAMPLE Deformations NSCM -21, Trondheim, October 16-17, 2008 – p.10/10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend