on networks of interconnected systems
play

ON NETWORKS OF INTERCONNECTED SYSTEMS Paul A. Fuhrmann Ben-Gurion - PowerPoint PPT Presentation

ON NETWORKS OF INTERCONNECTED SYSTEMS Paul A. Fuhrmann Ben-Gurion University of the Negev (Joint work with U. Helmke) x i ( t + 1) = i x i ( t ) + i v i ( t ) w i ( t ) = i x i ( t ) , i = 1 , . . . , N. N v i ( t ) = j =1 A ij w


  1. ON NETWORKS OF INTERCONNECTED SYSTEMS Paul A. Fuhrmann Ben-Gurion University of the Negev (Joint work with U. Helmke) x i ( t + 1) = α i x i ( t ) + β i v i ( t ) w i ( t ) = γ i x i ( t ) , i = 1 , . . . , N. � N v i ( t ) = j =1 A ij w j ( t ) + B i u ( t ) � N y ( t ) = i =1 C i w i ( t ) + Du ( t ) Ben Gurion University, May 27, 2012 – p. 1/37

  2. MOTIVATION • Study controllability and observability properties of networks of, homogeneous or nonhomogeneous, node linear systems. • Allow flexibility in the nature (discrete time, continuous time) and representation (first order, high order) of both the node systems as well as the interconnections (constant, dynamic). • Checking controllability by use of the Kalman controllability and observability matrices is impractical. These we replace by compact coprimeness conditions. Ben Gurion University, May 27, 2012 – p. 2/37

  3. EXAMPLES • Formation Control of Autonomous Distributed Systems. (Common Dynamics), Flocks of Birds. • Traffic Control; Truck Convoys. • (Interconnecting) Biological Systems; Cicadas. • Synchronization Phenomena; Ciliary Beating. • Control of Electrical Networks (Grids). Ben Gurion University, May 27, 2012 – p. 3/37

  4. DIFFICULTIES • Linearity is too restrictive. • (Ballistic) Controllability may not be the correct concept. • Study self organizing systems (organizations). A variational approach? What do we optimize? Efficiency? What is it? Ben Gurion University, May 27, 2012 – p. 4/37

  5. REFERENCES P.A. Fuhrmann and U. Helmke, ”Strict equivalence, controllability and observability of networks of linear systems”, submitted to Mathematics of Control, Signals and Systems . P.A. Fuhrmann, “On strict system equivalence and similarity”, Int. J. Contr. , 25, 5-10, (1977). H.H. Rosenbrock and A.C. Pugh, “Contributions to a hierarchical theory of systems”, Int. J. Contr. , 19, 845-867, (1974). F.M. Callier, and C.D. Nahum, “Necessary and sufficient conditions for the complete controllability and observability of systems in series using the coprime decomposition of a rational matrix”, IEEE Trans. Circuits and System , Ben Gurion University, May 27, 2012 – p. 5/37

  6. FROM POLYNOMIALS TO MODEL SPACES Polynomial Arithmetic: D ( z ) ∈ F [ z ] m × m , det D ( z ) � = 0 Geometry: Polynomial Model: π D : F [ z ] m −  → F [ z ] m   π D f = Dπ − D − 1 f X D = Im π D ≃ F [ z ] m /D ( z ) F [ z ] m   Rational Model: D ( σ ) : z − 1 F [[ z − 1 ]] m −  → z − 1 F [[ z − 1 ]] m   D ( σ ) h = π − Dh, π D h = π − D − 1 π + Dh Ker D ( σ ) = Im π D = X D ≃ X D   Ben Gurion University, May 27, 2012 – p. 6/37

  7. FACTORIZATIONS AND INVARIANT SUBSPACES D ( z ) ∈ F [ z ] m × m nonsingular. V ⊂ X D & S D V ⊂ V ⇔ V = D 1 X D 2 V ⊂ X D & S D V ⊂ V ⇔ V = X D 2 D ( z ) = D 1 ( z ) D 2 ( z ) , D 1 ( z ) , D 2 ( z ) ∈ F [ z ] m × m CONNECTION BETWEEN ALGEBRA AND GEOMETRY DIRECT LINK TO GEOMETRIC CONTROL AND BEHAVIORS Ben Gurion University, May 27, 2012 – p. 7/37

  8. MODEL HOMOMORPHISMS Let D 1 ( z ) ∈ F [ z ] m × m and D 2 ( z ) ∈ F [ z ] p × p be nonsingular. S D = σ | X D Z : X D 1 − → X D 2 is an F [ z ] -homomorphism, i.e. ZS D 1 = S D 2 Z if and only if there exist N 1 ( z ) , N 2 ( z ) ∈ F [ z ] p × m such that N 2 ( z ) D 1 ( z ) = D 2 ( z ) N 1 ( z ) Zh = π − N 1 h = N 1 ( σ ) h. INVERTIBILITY AND COPRIMENESS Ben Gurion University, May 27, 2012 – p. 8/37

  9. THE SHIFT REALIZATION    A B G ( z ) = V ( z ) T ( z ) − 1 U ( z ) + W ( z ) =  C D  A = S T   Bξ = π T Uξ,  Cf = ( V T − 1 f ) − 1   D = G ( ∞ ) .  CA j − 1 Bξ = ( V T − 1 π T z j − 1 π T Uξ ) − 1 = ( V π − T − 1 z j − 1 Uξ ) − 1 = ( z j − 1 ( V T − 1 U + W ) ξ ) − 1 Realization is reachable ⇔ T ( z ) and U ( z ) left coprime. Realization is observable ⇔ T ( z ) and V ( z ) right coprime. Ben Gurion University, May 27, 2012 – p. 9/37

  10. SYSTEM EQUIVALENCE Rosenbrock, Fuhrmann G ( z ) = V i ( z ) T i ( z ) − 1 U i ( z ) + W i ( z ) , i = 1 , 2 (no coprimeness assumptions); Σ i the associated shift realizations � T i ( z ) − U i ( z ) � P i = V i ( z ) W i ( z ) P 1 ≃ FSE P 2 if Σ 1 ≃ Σ 2 P 1 ≃ FSE P 2 ⇔ ∃ M ( z ) , X ( z ) , N ( z ) , Y ( z ) , such that M ( z ) ∧ L T 2 ( z ) = I, & N ( z ) ∧ R T 1 ( z ) = I          M ( z ) 0  T 1 ( z ) − U 1 ( z )  T 2 ( z ) − U 2 ( z )  N ( z ) Y ( z )  =    X ( z ) I V 1 ( z ) W 1 ( z ) V 2 ( z ) W 2 ( z ) 0 I Ben Gurion University, May 27, 2012 – p. 10/37

  11. NODE REPRESENTATIONS G i ( z ) = γ i ( zI − α i ) − 1 β i = Q i ( z ) − 1 P i ( z ) = P i ( z ) Q i ( z ) − 1 = V i ( z ) T i ( z ) − 1 U i ( z ) + W i ( z ) . Assume all representations are minimal, i.e., δ ( G i ) = deg det Q i = deg det Q i = deg det T i . This is equivalent to the controllability and observability of the shift realizations associated with these representations, i.e., to the left coprimeness of Q i ( z ) , P i ( z ) , the right coprimeness of P i ( z ) , Q i ( z ) , the left coprimeness of T i ( z ) , U i ( z ) and the right coprimeness of T i ( z ) , V i ( z ) . Ben Gurion University, May 27, 2012 – p. 11/37

  12. INTERCONNECION MODEL x i ( t + 1) = α i x i ( t ) + β i v i ( t ) w i ( t ) = γ i x i ( t ) , i = 1 , . . . , N. v i ( t ) = � N j =1 A ij w j ( t ) + B i u ( t ) y ( t ) = � N i =1 C i w i ( t ) + Du ( t ) x ( t + 1) = αx ( t ) + βv ( t ) w ( t ) = γx ( t ) v ( t ) = Aw ( t ) + Bu ( t ) y ( t ) = Cw ( t ) + Du ( t ) x ( t + 1) = A x ( t ) + B u ( t ) y ( t ) = C x ( t ) + D u ( t ) A := α + βAγ, B := βB, C := Cγ, D := D. Ben Gurion University, May 27, 2012 – p. 12/37

  13. Node transfer function G ( z ) := diag ( G 1 ( z ) , . . . , G N ( z )) = γ ( zI − α ) − 1 β. Interconnection transfer function ϕ ( z ) = C ( zI − A ) − 1 B + D. Global network transfer function Φ( z ) = C ( zI − A ) − 1 B + D ; = Cγ ( zI − α − βAγ ) − 1 βB + D. Ben Gurion University, May 27, 2012 – p. 13/37

  14. MATRIX FRACTION DESCRIPTIONS (MFD) Q i ( σ ) ξ i = P i ( σ ) v i w i = ξ i v i ( t ) = � N j =1 A ij w j ( t ) + B i u ( t ) y ( t ) = � N i =1 C i w i ( t ) + Du ( t ) Φ( z ) = C ( Q ( z ) − P ( z ) A ) − 1 P ( z ) B + D. Here Q ( z ) = diag ( Q 1 ( z ) , . . . , Q N ( z )) , etc. Ben Gurion University, May 27, 2012 – p. 14/37

  15. POLYNOMIAL MATRIX DESCRIPTION (PMD) T i ( σ ) ξ i = U i ( σ ) v i w i = V i ( σ ) ξ i + W i ( σ ) v i v i ( t ) = � N j =1 A ij w j ( t ) + B i u ( t ) y ( t ) = � N i =1 C i w i ( t ) + Du ( t ) For the case W ( z ) = 0 : Φ( z ) = CV ( z )( T ( z ) − U ( z ) AV ( z )) − 1 U ( z ) B + D. Here T ( z ) = diag ( T 1 ( z ) , . . . , T N ( z )) , etc. Ben Gurion University, May 27, 2012 – p. 15/37

  16. EQUIVALENCE UNDER INTERCONNECTION Given N FSE node systems in PMD form � � T ( ν ) − U ( ν ) ( z ) ( z ) i i , ν = 1 , 2 ; i = 1 , . . . , N . V ( ν ) W ( ν ) ( z ) ( z ) i i � E ( σ ) v = A ( σ ) w + B ( σ ) u Dynamic interconnection: = C ( σ ) w + Du. y     T (1) − U (1) T (2) − U (2) 0 0 0 0     V (1) W (1) V (2) W (2) − I 0 − I 0         ≃ F SE     0 E − A − B 0 E − A − B         0 0 0 0 C D C D Ben Gurion University, May 27, 2012 – p. 16/37

  17. STANDARD INTERCONNECTIONS • SERIES CONNECTION � � � � 0 0 I � � A = , B = , C = 0 I I 0 0 • PARALLEL CONNECTION � � � � 0 0 I � � A = , B = , C = I I 0 0 I • FEEDBACK CONNECTION � � � � 0 I I � � A = , B = , C = I 0 I 0 0 Ben Gurion University, May 27, 2012 – p. 17/37

  18. SERIES CONNECTION Given systems Σ i , i = 1 , 2 , with transfer functions � A i B i � G i ( z ) = . C i D i G 1 ( z ) ∈ F ( z ) k × m , G 2 ( z ) ∈ F ( z ) p × k . The series coupling Σ 1 ∧ Σ 2 , is defined by:  x (1) A 1 x (1) = + B 1 u t t +1 t    C 1 x (1)  y ′ = + D 1 u t  t t   x (2) A 2 x (2) = + B 2 u ′ t +1 t t  C 2 x (2) y t = + D 2 u ′   t t    u ′ = y ′ t .  t Ben Gurion University, May 27, 2012 – p. 18/37

  19. Schematically, we have the following diagram: u y ✲ ✲ ✲ G 1 G 2 � A 2 B 2 � A 1 B 1 � � G 2 ( z ) G 1 ( z ) = × C 2 D 2 C 1 D 1  A 1 0 B 1   . B 2 C 1 A 2 B 2 D 1 =  D 2 C 1 C 1 D 2 D 1 Controllability and observability are difficult to deduce from this representation. Ben Gurion University, May 27, 2012 – p. 19/37

  20. SERIES CONNECTION AND COPRIMENESS • Let G 1 ( z ) ∈ F ( z ) k × m , G 2 ( z ) ∈ F ( z ) p × k have the coprime matrix fraction representations G 1 ( z ) = D L 1 ( z ) − 1 N L 1 ( z ) = N R 1 ( z ) D R 1 ( z ) − 1 G 2 ( z ) = D L 2 ( z ) − 1 N L 2 ( z ) = N R 2 ( z ) D R 2 ( z ) − 1 Then δ ( G 2 G 1 ) ≤ δ ( G 1 ) + δ ( G 2 ) . • The series coupling of the shift realizations associated with N R 2 ( z ) D R 2 ( z ) − 1 and N R 1 ( z ) D R 1 ( z ) − 1 is controllable if and only if N R 1 ( z ) and D R 2 ( z ) are left coprime. Ben Gurion University, May 27, 2012 – p. 20/37

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend