on minimal constraint networks
play

On Minimal Constraint Networks Georg Gottlob Minimal Constraint - PowerPoint PPT Presentation

On Minimal Constraint Networks Georg Gottlob Minimal Constraint Networks Montanari 1974: To each binary constraint network N, there exists a unique equivalent complete network M(N) such that each pair of values of a constraint in M(N)


  1. On Minimal Constraint Networks Georg Gottlob

  2. Minimal Constraint Networks Montanari 1974: To each binary constraint network N, there exists a unique equivalent complete network M(N) such that each pair of values of a constraint in M(N) belongs to some solution. This minimal network M(N) can be computed by projecting sol(N) to all pairs of distinct variables. Example

  3. A B B C A C C D Binary constraint network N a1 b1 b1 c1 a1 c2 c1 d2 a1 b2 b1 c2 a2 c1 c2 d1 A B a1 b3 b2 c2 a3 c1 C a2 b1 b3 c1 a3 c2 D a3 b4 b4 c1

  4. A B B C A C C D Binary constraint network N a1 b1 b1 c1 a1 c2 c1 d2 a1 b2 b1 c2 a2 c1 c2 d1 A B a1 b3 b2 c2 a3 c1 C a2 b1 b3 c1 a3 c2 D a3 b4 b4 c1 A B C D a1 b1 c2 d1 sol(N) a1 b2 c2 d1 a2 b1 c1 d2 a3 b4 c1 d2 Minimal network M(N) C D A C A D B D A B B C c1 d2 a1 c2 a1 d1 b1 d1 a1 b1 b1 c1 c2 d1 a2 c1 a2 d2 b1 d2 A B a1 b2 b1 c2 a3 c1 a3 d2 a2 b1 b2 c2 b2 d1 D C b4 d2 a3 b4 b4 c1

  5. A B B C A C C D Binary constraint network N a1 b1 b1 c1 a1 c2 c1 d2 a1 b2 b1 c2 a2 c1 c2 d1 A B a1 b3 b2 c2 a3 c1 C a2 b1 b3 c1 a3 c2 D a3 b4 b4 c1 A B C D a1 b1 c2 d1 Definition generalizes to sol(N) a1 b2 c2 d1 k-ary constraint networks… a2 b1 c1 d2 a3 b4 c1 d2 Minimal network M(N) C D A C A D B D A B B C c1 d2 a1 c2 a1 d1 b1 d1 a1 b1 b1 c1 c2 d1 a2 c1 a2 d2 b1 d2 A B a1 b2 b1 c2 a3 c1 a3 d2 a2 b1 b2 c2 b2 d1 D C b4 d2 a3 b4 b4 c1

  6. Facts about minimal networks • By definition, sol(M(N)) = sol(N) • M(N) is empty iff N has no solution. • Computing M(N) from N is NP-hard [Montanari; Mackworth] • Recognizing minimality of a network NP-hard [Gaur-95]

  7. More Facts about minimal networks • Idempotency of M-operator: M(M(N)) = M(N) • M(N) is the intersection of all networks equivalent to M(N) (defined over the same complete schema as M(N) ) • M(N) is the intersection of all networks weaker than M(N) (defined over the same complete schema as M(N) )

  8. Usefulness of minimal networks: Knowledge Compilation • k-variable queries can be answered in PTIME based on the k-ary minimal network:  x  y (partof(y,x)   samecolor(x,y)) • Relevant to product configuration problems (e.g. k=3) cartype= suv , engine= gas , make=( volvo or vw ) Polynomial space!

  9. Usefulness of minimal networks: Knowledge Compilation • k-variable queries can be answered in PTIME based on the k-ary minimal network:  x  y (partof(y,x)   samecolor(x,y)) • Relevant to product configuration problems (e.g. k=3) cartype= suv , engine= gas , make=( volvo or vw ) You have three wishes!

  10. Usefulness of minimal networks: Knowledge Compilation • k-variable queries can be answered in PTIME based on the k-ary minimal network:  x  y (partof(y,x)   samecolor(x,y)) • Relevant to product configuration problems cartype= suv , engine= gas , make=( volvo or vw ) Express three wishes, and I will check them in polynomial time!

  11. Main Problem Studied Given a nonempty minimal constraint network N, compute one solution to N. How complex is this problem? 70es-90es: Many believed it to be tractable. Some even believed all solutions to N can be generated by simple backtrack-free search. But this is not the case.

  12. A B B C A C C D Binary constraint network N a1 b1 b1 c1 a1 c2 c1 d2 a1 b2 b1 c2 a2 c1 c2 d1 A B a1 b3 b2 c2 a3 c1 C a2 b1 b3 c1 a3 c2 D a3 b4 b4 c1 A B C D a1 b1 c2 d1 sol(N) a1 b2 c2 d1 a2 b1 c1 d2 a3 b4 c1 d2 Minimal network M(N) C D A C A D B D A B9 B C c1 d2 a1 c2 a1 d1 b1 d1 a1 b1 b1 c1 c2 d1 a2 c1 a2 d2 b1 d2 A B a1 b2 b1 c2 a3 c1 a3 d2 a2 b1 b2 c2 b2 d1 D C b4 d2 a3 b4 b4 c1

  13. A B B C A C C D Binary constraint network N a1 b1 b1 c1 a1 c2 c1 d2 a1 b2 b1 c2 a2 c1 c2 d1 A B a1 b3 b2 c2 a3 c1 C a2 b1 b3 c1 a3 c2 D a3 b4 b4 c1 A B C D a1 b1 c2 d1 sol(N) a1 b2 c2 d1 a2 b1 c1 d2 a3 b4 c1 d2 Minimal network M(N) C D A C A D B D A B B C c1 d2 a1 c2 a1 d1 b1 d1 a1 b1 b1 c1 c2 d1 a2 c1 a2 d2 b1 d2 A B a1 b2 b1 c2 a3 c1 a3 d2 a2 b1 b2 c2 b2 d1 D C b4 d2 a3 b4 b4 c1

  14. A B B C A C C D Binary constraint network N a1 b1 b1 c1 a1 c2 c1 d2 a1 b2 b1 c2 a2 c1 c2 d1 A B a1 b3 b2 c2 a3 c1 C a2 b1 b3 c1 a3 c2 D a3 b4 b4 c1 A B C D a1 b1 c2 d1 sol(N) a1 b2 c2 d1 a2 b1 c1 d2 a3 b4 c1 d2 Minimal network M(N) C D A C A D B D A B B C c1 d2 a1 c2 a1 d1 b1 d1 a1 b1 b1 c1 c2 d1 a2 c1 a2 d2 b1 d2 A B a1 b2 b1 c2 a3 c1 a3 d2 a2 b1 b2 c2 b2 d1 D C b4 d2 a3 b4 b4 c1

  15. A B B C A C C D Binary constraint network N a1 b1 b1 c1 a1 c2 c1 d2 a1 b2 b1 c2 a2 c1 c2 d1 A B a1 b3 b2 c2 a3 c1 C a2 b1 b3 c1 a3 c2 D a3 b4 b4 c1 A B C D a1 b1 c2 d1 sol(N) a1 b2 c2 d1 a2 b1 c1 d2 a3 b4 c1 d2 Minimal network M(N) C D A C A D B D A B B C c1 d2 a1 c2 a1 d1 b1 d1 a1 b1 b1 c1 c2 d1 a2 c1 a2 d2 b1 d2 A B a1 b2 b1 c2 a3 c1 a3 d2 a2 b1 b2 c2 b2 d1 D C b4 d2 a3 b4 b4 c1

  16. Computing a solution Are there more sophisticated efficient algorithms ? Conjecture [Gaur 95]: Tractable Conjecture [Dechter 03]: Intractable The problem has remained open until recently. Progress made by Bessiere (CP Handbk) using [Cros03 ]: Theorem [Bessiere 06]: If solutions to minimal networks can be computed via polytime backtrack-free fair strategies, then the Polynomial Hierarchy collapses.

  17. Main Result Theorem : Computing a solution to a non-empty minimal network is NP-hard. Caveat: Promise-problem. Still, NP-hardness is well-defined. NP-hardness: If there exists a PTIME algorithm findsol , that solves the problem, then NP=P.

  18. Proof Sketch • Show that each SAT instance C can be transformed in polynomial time into an “equivalent” constraint network S(C), such that S(C) is minimal in case C is satisfiable. • Assume there exists an algorithm findsol that finds solution to minimal networks in polynomial time. Apply it to S(C) to obtain a PTIME SAT-solver.

  19. Proof Sketch SAT-instance C={K 1 ,..,K r } S: polytime transformation candidate MinCN S(C) C satisfiable  S(C) minimal & sol(S(C)) = satisfying truth value assignments of C C unsatisfiable  S(C) arbitrary

  20. SAT-instance C={K 1 ,..,K r } S: polytime transformation findsol candidate MinCN S(C) findsol C satisfiable  S(C) minimal computes solution (t.v.a)  C unsatisfiable  S(C) arbitrary if S(c) is minimal and nonempty

  21. SAT-instance C={K 1 ,..,K r } S: polytime transformation findsol candidate polynomial time? MinCN S(C) findsol C satisfiable  S(C) minimal computes solution (t.v.a)  C unsatisfiable  S(C) arbitrary if S(c) is minimal and nonempty

  22. SAT-instance C={K 1 ,..,K r } If findsol was polynomial, we could build a PTIME SAT-solver! S: polytime transformation C unsatisf. yes no no  S(C) findsol candidate empty has satisfies yes no ? output? MinCN S(C) C ? yes findsol C C satisfiable  S(C) minimal computes solution (t.v.a)  satisfiable C unsatisfiable  S(C) arbitrary if S(c) is minimal and nonempty

  23. SAT-instance C={K 1 ,..,K r } findsol cannot be polynomial unless NP=P ! S: polytime transformation C unsatisf. yes no no  S(C) findsol Candidate empty has satisfies yes no ? output? MinCN S(C) C ? yes findsol C C satisfiable  S(C) minimal computes solution (t.v.a)  satisfiable C unsatisfiable  S(C) arbitrary If S(c) is minimal and nonempty

  24. Translating C to S(C) SAT-instance C={K 1 ,..,K r } S: polytime transformation Candidate MinCN S(C) C satisfiable  S(C) minimal & sol(S(C)) = satisfying truth value assignments of C C unsatisfiable  S(C) arbitrary

  25. Translation: First Attempt K 1 = p   q  r K 2 =  p   q SAT-instance C={K 1 ,..,K r } K 3 = q Each clause K i becomes a variable Dom(K 1 )= {p,  q, r} S: polytime Dom(K 2 )= {p,  q} transformation Dom(K 3 )= {q} K 1 K 2 K 1 K 3 K 2 K 3 -------- -------- -------- p  q  p q p q Candidate  q  p r q MinCN S(C)  q  q r  p C satisfiable  S(C) minimal r  q C unsatisfiable  S(C) arbitrary

  26. Translation: First Attempt K 1 = p   q  r K 2 =  p   q SAT-instance C={K 1 ,..,K r } K 3 = q S: polytime transformation K 1 K 2 K 1 K 3 K 2 K 3 -------- -------- -------- p  q  p q p q Candidate  q  p r q MinCN S(C)  q  q r  p minimal? C satisfiable  S(C) minimal r  q C unsatisfiable  S(C) arbitrary

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend