on contraction method in function spaces and the partial
play

On Contraction Method in function spaces and the partial match - PowerPoint PPT Presentation

On Contraction Method in function spaces and the partial match problem Henning Sulzbach J. W. Goethe-Universit at Frankfurt a. M. INRIA Paris, October 18, 2010 joint work with N. Broutin & R. Neininger Henning Sulzbach J. W.


  1. On Contraction Method in function spaces and the partial match problem Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. INRIA Paris, October 18, 2010 joint work with N. Broutin & R. Neininger Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  2. Contraction Method - Example Given a sequence of random variables ( X n ) that contains a recursive structure, contraction method is a tool to obtain asymptotic results for the distribution and moments of ( X n ). Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  3. Contraction Method - Example Given a sequence of random variables ( X n ) that contains a recursive structure, contraction method is a tool to obtain asymptotic results for the distribution and moments of ( X n ). Example - Quickselect Task: Given a list of n different numbers, find the element of rank k , for simplicity assume k = 1. Algorithm: ◮ Choose one element x uniformly at random among all ( pivot ) ◮ Comparing all elements with x gives sublists S < and S > ◮ If I n = | S < | = 1 return x otherwise search recursively in S < Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  4. Quickselect - Analysis Let X n be the number of key comparisons and I n = | S < | . Then d X n = X I n + n − 1 for ( X j ) , I n independent and I n uniformly distributed on { 0 , . . . , n − 1 } . Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  5. Quickselect - Analysis Let X n be the number of key comparisons and I n = | S < | . Then d X n = X I n + n − 1 for ( X j ) , I n independent and I n uniformly distributed on { 0 , . . . , n − 1 } . E [ X n ] ≈ 2 n suggests the scaling Y n := X n n Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  6. Quickselect - Analysis Let X n be the number of key comparisons and I n = | S < | . Then d X n = X I n + n − 1 for ( X j ) , I n independent and I n uniformly distributed on { 0 , . . . , n − 1 } . E [ X n ] ≈ 2 n suggests the scaling n Y I n + 1 − 1 Y n := X n = I n d n . n Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  7. Quickselect - Analysis A possible limit for n Y I n + 1 − 1 Y n := X n = I n d n . n Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  8. Quickselect - Analysis A possible limit for n Y I n + 1 − 1 Y n := X n = I n d n . n should satisfy d Y = UY + 1 for independent U , Y , U uniform on [0 , 1]. Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  9. Quickselect - Analysis A possible limit for n Y I n + 1 − 1 Y n := X n = I n d n . n should satisfy d Y = UY + 1 for independent U , Y , U uniform on [0 , 1]. Observe that Y (or rather L ( Y )) satisfies this if L ( Y ) is a fixed-point of the following map : M ( R ) → M ( R ) F F ( µ ) = L ( UY + 1) , with L ( Y ) = µ , U uniform on [0 , 1] and U , Y independent. Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  10. Quickselect - Analysis A possible limit for n Y I n + 1 − 1 Y n := X n = I n d n . n should satisfy d Y = UY + 1 for independent U , Y , U uniform on [0 , 1]. Observe that Y (or rather L ( Y )) satisfies this if L ( Y ) is a fixed-point of the following map : M ( R ) → M ( R ) F F ( µ ) = L ( UY + 1) , with L ( Y ) = µ , U uniform on [0 , 1] and U , Y independent. Idea: Use Banach fixed point theorem. Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  11. Quickselect - Contraction For µ, ν ∈ M ( R ) let ℓ 1 ( µ, ν ) = X , Y : L ( X )= µ, L ( Y )= ν E [ | X − Y | ] . inf Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  12. Quickselect - Contraction For µ, ν ∈ M ( R ) let ℓ 1 ( µ, ν ) = X , Y : L ( X )= µ, L ( Y )= ν E [ | X − Y | ] . inf ℓ 1 is a complete metric on the subset M ′ ( R ) of M ( R ) consisting of probability measures with finite first moment and w ℓ 1 ( µ n , µ ) → 0 ⇒ µ − → µ . Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  13. Quickselect - Contraction For µ, ν ∈ M ( R ) let ℓ 1 ( µ, ν ) = X , Y : L ( X )= µ, L ( Y )= ν E [ | X − Y | ] . inf ℓ 1 is a complete metric on the subset M ′ ( R ) of M ( R ) consisting of probability measures with finite first moment and w ℓ 1 ( µ n , µ ) → 0 ⇒ µ − → µ . Show: F is a contraction according to ℓ 1 in M ′ ( R ) . Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  14. Quickselect - Contraction Proof: Let X , Y s.t. L ( X ) = µ and L ( Y ) = ν and E [ | X − Y | ] ≤ ℓ 1 ( µ, ν ) + ε. Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  15. Quickselect - Contraction Proof: Let X , Y s.t. L ( X ) = µ and L ( Y ) = ν and E [ | X − Y | ] ≤ ℓ 1 ( µ, ν ) + ε. Then ℓ 1 ( F ( µ ) , F ( ν )) ≤ E [ | UX + 1 − ( UY + 1) | ] = E U E [ | X − Y | ] ≤ E U ℓ 1 ( µ, ν ) + ε Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  16. Quickselect - Contraction Proof: Let X , Y s.t. L ( X ) = µ and L ( Y ) = ν and E [ | X − Y | ] ≤ ℓ 1 ( µ, ν ) + ε. Then ℓ 1 ( F ( µ ) , F ( ν )) ≤ E [ | UX + 1 − ( UY + 1) | ] = E U E [ | X − Y | ] ≤ E U ℓ 1 ( µ, ν ) + ε which gives ℓ 1 ( F ( µ ) , F ( ν )) ≤ E U ℓ 1 ( µ, ν ) . � Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  17. Quickselect - Contraction The stochastic fixed-point equation d Y = UY + 1 has a unique solution in M ′ ( R ) and it is easy to show that ℓ 1 ( Y n , Y ) → 0 . Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  18. Quickselect - Contraction The stochastic fixed-point equation d Y = UY + 1 has a unique solution in M ′ ( R ) and it is easy to show that ℓ 1 ( Y n , Y ) → 0 . Typically the number of subproblems is larger than one. For example, if X n denotes the number of key comparisons performed by Quicksort sorting a list of n elements, then d = X ′ I n + X ′′ n − 1 − I n + n − 1 X n with independent copies ( X ′ j ) , ( X ′′ j ) independent of I n . Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  19. Contraction method for recursive stochastic processes Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  20. Contraction method for recursive stochastic processes Usual situation of an affine recursion after scaling: K � d A ( n ) ◦ X r + b ( n ) = X n r I ( n ) r r =1 with r . v . ( X n ) , b ( n ) taking values in some space S , A ( n ) random r operators from S to S , and independent copies ( X 1 n ) , . . . , ( X K n ) of ( X n ) . Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  21. Contraction method for recursive stochastic processes Usual situation of an affine recursion after scaling: K � d A ( n ) ◦ X r + b ( n ) = X n r I ( n ) r r =1 with r . v . ( X n ) , b ( n ) taking values in some space S , A ( n ) random r operators from S to S , and independent copies ( X 1 n ) , . . . , ( X K n ) of ( X n ) . If A ( n ) → A r and b ( n ) → b for some S valued processes A r , b , this r suggests X n → X , = � K r =1 A r ◦ X ( r ) + b (uniquely). where X solves X d Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  22. Applications - The R d case Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  23. Applications - The R d case ◮ K = 1 : Quickselect ◮ K = 2 : BST, RRT: Pathlength, Profile,. . . , Size of random Tries ◮ K = m : m -ary search trees ◮ K = K ( n ) random: Galton-Watson trees ◮ d = 2 : Wiener Index Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  24. Example in C ([0 , 1]) - Donsker’s Theorem Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

  25. Example in C ([0 , 1]) - Donsker’s Theorem Let X 1 , X 2 , . . . be iid random variables with E X 1 = 0 , E X 2 1 = 1. The process   ⌊ nt ⌋ � 1 S n  ,  t = √ n X k + ( nt − ⌊ t ⌋ ) X ⌊ nt ⌋ +1 t ∈ [0 , 1] k =1 Henning Sulzbach J. W. Goethe-Universit¨ at Frankfurt a. M. On Contraction Method in function spaces and the partial match

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend