on a q analog of the ap ery numbers
play

On a q -analog of the Ap ery numbers International conference on - PowerPoint PPT Presentation

On a q -analog of the Ap ery numbers International conference on orthogonal polynomials and q -series University of Central Florida celebrating Mourad E.H. Ismail Armin Straub May 12, 2015 University of Illinois at UrbanaChampaign n


  1. On a q -analog of the Ap´ ery numbers International conference on orthogonal polynomials and q -series University of Central Florida celebrating Mourad E.H. Ismail Armin Straub May 12, 2015 University of Illinois at Urbana–Champaign n � n � 2 � n + k � 2 � A ( n ) = k k k =0 1 , 5 , 73 , 1445 , 33001 , 819005 , 21460825 , . . . On a q -analog of the Ap´ ery numbers Armin Straub 1 / 21

  2. Positivity of rational functions All Taylor coefficients of the following function are positive: CONJ Kauers- Zeilberger 1 2008 1 − ( x + y + z + w ) + 2( yzw + xzw + xyw + xyz ) + 4 xyzw. • Among those present, Askey, Ismail, Koornwinder have contributed to understanding the positivity of (some) rational functions. On a q -analog of the Ap´ ery numbers Armin Straub 2 / 21

  3. Positivity of rational functions All Taylor coefficients of the following function are positive: CONJ Kauers- Zeilberger 1 2008 1 − ( x + y + z + w ) + 2( yzw + xzw + xyw + xyz ) + 4 xyzw. • Among those present, Askey, Ismail, Koornwinder have contributed to understanding the positivity of (some) rational functions. The diagonal coefficients of the Kauers–Zeilberger function are PROP S-Zudilin 2015 n � n � 2 � 2 k � 2 � D ( n ) = . k n k =0 • D ( n ) is an example of an Ap´ ery-like sequence . On a q -analog of the Ap´ ery numbers Armin Straub 2 / 21

  4. Positivity of rational functions All Taylor coefficients of the following function are positive: CONJ Kauers- Zeilberger 1 2008 1 − ( x + y + z + w ) + 2( yzw + xzw + xyw + xyz ) + 4 xyzw. • Among those present, Askey, Ismail, Koornwinder have contributed to understanding the positivity of (some) rational functions. The diagonal coefficients of the Kauers–Zeilberger function are PROP S-Zudilin 2015 n � n � 2 � 2 k � 2 � D ( n ) = . k n k =0 • D ( n ) is an example of an Ap´ ery-like sequence . Can we conclude the conjectured positivity from the positivity of Q S-Zudilin 1 D ( n ) together with the (obvious) positivity of 1 − ( x + y + z )+2 xyz ? 2015 On a q -analog of the Ap´ ery numbers Armin Straub 2 / 21

  5. Ap´ ery numbers and the irrationality of ζ (3) • The Ap´ ery numbers 1 , 5 , 73 , 1445 , . . . n � n � 2 � n + k � 2 � A ( n ) = k k satisfy k =0 ( n + 1) 3 A ( n + 1) = (2 n + 1)(17 n 2 + 17 n + 5) A ( n ) − n 3 A ( n − 1) . On a q -analog of the Ap´ ery numbers Armin Straub 3 / 21

  6. Ap´ ery numbers and the irrationality of ζ (3) • The Ap´ ery numbers 1 , 5 , 73 , 1445 , . . . n � n � 2 � n + k � 2 � A ( n ) = k k satisfy k =0 ( n + 1) 3 A ( n + 1) = (2 n + 1)(17 n 2 + 17 n + 5) A ( n ) − n 3 A ( n − 1) . ζ (3) = � ∞ 1 THM n 3 is irrational. n =1 Ap´ ery ’78 The same recurrence is satisfied by the “near”-integers proof   n � n � 2 � n + k � 2 n k ( − 1) m − 1 1 � � �  . B ( n ) = j 3 +  2 m 3 � n �� n + m � k k m m j =1 m =1 k =0 Then, B ( n ) A ( n ) → ζ (3) . But too fast for ζ (3) to be rational. On a q -analog of the Ap´ ery numbers Armin Straub 3 / 21

  7. Zagier’s search and Ap´ ery-like numbers • Recurrence for Ap´ ery numbers is the case ( a, b, c ) = (17 , 5 , 1) of ( n + 1) 3 u n +1 = (2 n + 1)( an 2 + an + b ) u n − cn 3 u n − 1 . Q Are there other tuples ( a, b, c ) for which the solution defined by Beukers, u − 1 = 0 , u 0 = 1 is integral? Zagier On a q -analog of the Ap´ ery numbers Armin Straub 4 / 21

  8. Zagier’s search and Ap´ ery-like numbers • Recurrence for Ap´ ery numbers is the case ( a, b, c ) = (17 , 5 , 1) of ( n + 1) 3 u n +1 = (2 n + 1)( an 2 + an + b ) u n − cn 3 u n − 1 . Q Are there other tuples ( a, b, c ) for which the solution defined by Beukers, u − 1 = 0 , u 0 = 1 is integral? Zagier • Essentially, only 14 tuples ( a, b, c ) found. (Almkvist–Zudilin) • 4 hypergeometric and 4 Legendrian solutions (with generating functions � 1 � � � � α, 1 − α � 2 2 , α, 1 − α 1 − C α z � � 3 F 2 � 4 C α z , 1 − C α z 2 F 1 , � � 1 , 1 1 1 − C α z � 6 and C α = 2 4 , 3 3 , 2 6 , 2 4 · 3 3 ) with α = 1 2 , 1 3 , 1 4 , 1 • 6 sporadic solutions • Similar (and intertwined) story for: • ( n + 1) 2 u n +1 = ( an 2 + an + b ) u n − cn 2 u n − 1 (Beukers, Zagier) • ( n + 1) 3 u n +1 = (2 n + 1)( an 2 + an + b ) u n − n ( cn 2 + d ) u n − 1 (Cooper) On a q -analog of the Ap´ ery numbers Armin Straub 4 / 21

  9. The six sporadic Ap´ ery-like numbers ( a, b, c ) A ( n ) � n � 2 � n + k � 2 � (17 , 5 , 1) Ap´ ery numbers k n k � n � 2 � 2 k � 2 � (12 , 4 , 16) k n k � n � 2 � 2 k �� 2( n − k ) � � (10 , 4 , 64) Domb numbers n − k k k k � n �� n + k � (3 k )! � ( − 1) k 3 n − 3 k (7 , 3 , 81) Almkvist–Zudilin numbers k ! 3 3 k n k � n � 3 �� 4 n − 5 k − 1 � � 4 n − 5 k �� � ( − 1) k (11 , 5 , 125) + 3 n 3 n k k � n � 2 � n �� k �� k + l � � (9 , 3 , − 27) k l l n k,l On a q -analog of the Ap´ ery numbers Armin Straub 5 / 21

  10. Ap´ ery-like numbers and modular forms • The Ap´ ery numbers A ( n ) satisfy 1 , 5 , 73 , 1145 , . . . � η 12 ( τ ) η 12 (6 τ ) � n η 7 (2 τ ) η 7 (3 τ ) � = A ( n ) . η 5 ( τ ) η 5 (6 τ ) η 12 (2 τ ) η 12 (3 τ ) n � 0 modular form modular function 1 + 5 q + 13 q 2 + 23 q 3 + O ( q 4 ) q − 12 q 2 + 66 q 3 + O ( q 4 ) q = e 2 πiτ On a q -analog of the Ap´ ery numbers Armin Straub 6 / 21

  11. Ap´ ery-like numbers and modular forms • The Ap´ ery numbers A ( n ) satisfy 1 , 5 , 73 , 1145 , . . . � η 12 ( τ ) η 12 (6 τ ) � n η 7 (2 τ ) η 7 (3 τ ) � = A ( n ) . η 5 ( τ ) η 5 (6 τ ) η 12 (2 τ ) η 12 (3 τ ) n � 0 modular form modular function 1 + 5 q + 13 q 2 + 23 q 3 + O ( q 4 ) q − 12 q 2 + 66 q 3 + O ( q 4 ) q = e 2 πiτ Not at all evidently, such a modular parametrization exists for FACT all known Ap´ ery-like numbers! On a q -analog of the Ap´ ery numbers Armin Straub 6 / 21

  12. Ap´ ery-like numbers and modular forms • The Ap´ ery numbers A ( n ) satisfy 1 , 5 , 73 , 1145 , . . . � η 12 ( τ ) η 12 (6 τ ) � n η 7 (2 τ ) η 7 (3 τ ) � = A ( n ) . η 5 ( τ ) η 5 (6 τ ) η 12 (2 τ ) η 12 (3 τ ) n � 0 modular form modular function 1 + 5 q + 13 q 2 + 23 q 3 + O ( q 4 ) q − 12 q 2 + 66 q 3 + O ( q 4 ) q = e 2 πiτ Not at all evidently, such a modular parametrization exists for FACT all known Ap´ ery-like numbers! √ • As a consequence, with z = 1 − 34 x + x 2 , � 1 � � 2 , 1 2 , 1 17 − x − z 1024 x � A ( n ) x n = � 2 √ 2(1 + x + z ) 3 / 2 3 F 2 � − . � (1 − x + z ) 4 1 , 1 4 n � 0 • Context: f ( τ ) modular form of (integral) weight k x ( τ ) modular function y ( x ) such that y ( x ( τ )) = f ( τ ) Then y ( x ) satisfies a linear differential equation of order k + 1 . On a q -analog of the Ap´ ery numbers Armin Straub 6 / 21

  13. Supercongruences for Ap´ ery numbers • Chowla, Cowles, Cowles (1980) conjectured that, for primes p � 5 , (mod p 3 ) . A ( p ) ≡ 5 On a q -analog of the Ap´ ery numbers Armin Straub 7 / 21

  14. Supercongruences for Ap´ ery numbers • Chowla, Cowles, Cowles (1980) conjectured that, for primes p � 5 , (mod p 3 ) . A ( p ) ≡ 5 (mod p 3 ) . • Gessel (1982) proved that A ( mp ) ≡ A ( m ) On a q -analog of the Ap´ ery numbers Armin Straub 7 / 21

  15. Supercongruences for Ap´ ery numbers • Chowla, Cowles, Cowles (1980) conjectured that, for primes p � 5 , (mod p 3 ) . A ( p ) ≡ 5 (mod p 3 ) . • Gessel (1982) proved that A ( mp ) ≡ A ( m ) The Ap´ ery numbers satisfy the supercongruence ( p � 5 ) THM Beukers, Coster A ( mp r ) ≡ A ( mp r − 1 ) (mod p 3 r ) . ’85, ’88 On a q -analog of the Ap´ ery numbers Armin Straub 7 / 21

  16. Supercongruences for Ap´ ery numbers • Chowla, Cowles, Cowles (1980) conjectured that, for primes p � 5 , (mod p 3 ) . A ( p ) ≡ 5 (mod p 3 ) . • Gessel (1982) proved that A ( mp ) ≡ A ( m ) The Ap´ ery numbers satisfy the supercongruence ( p � 5 ) THM Beukers, Coster A ( mp r ) ≡ A ( mp r − 1 ) (mod p 3 r ) . ’85, ’88 EG For primes p , simple combinatorics proves the congruence � 2 p � � p �� � p � (mod p 2 ) . = ≡ 1 + 1 p k p − k k For p � 5 , Wolstenholme’s congruence shows that, in fact, � 2 p � (mod p 3 ) . ≡ 2 p On a q -analog of the Ap´ ery numbers Armin Straub 7 / 21

  17. Supercongruences for Ap´ ery-like numbers • Conjecturally, supercongruences like A ( mp r ) ≡ A ( mp r − 1 ) (mod p 3 r ) Robert Osburn Brundaban Sahu (University of Dublin) (NISER, India) hold for all Ap´ ery-like numbers. Osburn–Sahu ’09 • Current state of affairs for the six sporadic sequences from earlier: ( a, b, c ) A ( n ) � n � 2 � n + k � 2 � (17 , 5 , 1) Beukers, Coster ’87-’88 k k n � n � 2 � 2 k � 2 � (12 , 4 , 16) Osburn–Sahu–S ’14 k k n � n � 2 � 2 k �� 2( n − k ) � � (10 , 4 , 64) Osburn–Sahu ’11 k k k n − k k ( − 1) k 3 n − 3 k � n � (3 k )! � �� n + k (7 , 3 , 81) modulo p 2 open!! 3 k n k ! 3 Amdeberhan ’14 � 3 �� 4 n − 5 k − 1 �� � k ( − 1) k � n � � 4 n − 5 k (11 , 5 , 125) + Osburn–Sahu–S ’14 k 3 n 3 n � � n � 2 � n �� k �� k + l � (9 , 3 , − 27) open k,l k l l n On a q -analog of the Ap´ ery numbers Armin Straub 8 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend