ode ode basic concepts and theorems
play

ode ode Basic Concepts and Theorems The n th order linear ODE takes - PowerPoint PPT Presentation

So Solution tion of of hi high gher er or orde der r ode ode Basic Concepts and Theorems The n th order linear ODE takes the form: n n 1 d y d y dy a a ... a a y f x ( ) n n 1 1


  1. So Solution tion of of hi high gher er or orde der r ode ode

  2. Basic Concepts and Theorems The n th order linear ODE takes the form:  n n 1 d y d y dy      a a ... a a y f x ( )   n n 1 1 0 n n 1 dx dy dx (1) y and all its derivatives are of the first degree a , a ,..., a (2) All the coefficients are function of the  n n 1 0 independent variable x only or constants.

  3. Definition: The D operator is defined to be: dy d   Dy D dx dx 2 2 d d y 2  2  D D y 2 2 dx dx n n d d y   n n D D y n n dx dx Theorem y y , ,..., n y are n independent solutions of the homogenous DE 1 2       y x c y c y ... c y then the general solution is 1 1 2 2 n n

  4. Complementary and particular solutions The complementary (or homogenous) solution: y is the solution of the homogenous case c The particular solution: y is any solution satisfy the non-homogenous case p y The general solution: G   y y y G c p

  5. Second Order Linear Homogenous DE with Constant Coefficients e   x      y y a y a y 0 1 0 e  e     2 x    x y y a e        2     2 x ( a a ) 0 ( a ) 0 1 0 1 0 This equation called the characteristic equation (c/e) (or auxiliary equation) of the DE.

  6.     x x y c e c e 1 2 The solution is: 1 2       5 6 0 y y y      2 5 6 0     2 x 3 x y c e c e 1 2         2 3 0        2, 3 1 2

  7. The solution is:      x y e ( c cos x c sin x ) 1 2      y 4 y 13 y 0      2 4 13 0    2 x y e ( c cos3 x c sin3 ) x 1 2     2 3 i 1,2

  8.     x x y c e c xe The solution is: 1 2      y 4 y 4 y 0  2     4 4 0   2 x 2 x y c e c xe 1 2   2    2 0      2 1 2

  9. Example      y 2 y y 0 Solution  2     2 1 0     x x   2 y c e c xe    1 2 1 0       1 1 2

  10. Example         y 4 y 5 y 0 y (0) 1 y (0) 0 Solution      2     4 5 0 y (0) 1 c c 1 1 2              y (0) 0 5 c c 0 5 1 0 1 2       1 5   5, 1 c , c 1 2 1 2 6 6 c e   5  x x 1 5 e  y c e   5 x x y e 1 2 6 6

  11. Example    y 9 y 0 Solution    2 9 0       3 i 1 2   y c cos3 x c sin3 x 1 2

  12. Higher Orders Homogenous Linear DE with Constant Coefficients      n n 1       a y a y ... a y a y 0  n n 1 1 0     1      n n (1) Set the c/e: a a ... a a 0  n n 1 1 0    , ,..., n (2) Find the roots: 1 2 (3) According to the nature of these roots we write the linearly independent solutions.

  13. Example       y 2 y 3 y 0 Solution         3   2    0, 1, 3 2 3 0 1 2 3       0 x x 3 x       2 y c e c e c e 2 3 0 1 2 3        3 x x       y c c e c e 3 1 0 1 2 3

  14. Example        y y 4 y 4 y 0 Solution          2  3   2     1 4 0 4 4 0              2    1, 2 i 1 4 1 0 1 2,3  x   y c e c cos2 x c sin2 x 1 2 3

  15. Example   4  2   D 2 D 1 y 0 Solution      4 2 2 1 0      i 1,2 3,4   2 2  ( 1) 0     y ( c cos x c sin ) x x c ( cos x c sin ) x 1 2 3 4

  16. Example   4  2   D 8 D 16 y 0 Solution      4 2   2   2  8 16 0 ( 2) ( 2) 0         2 2 2, 2 ( 4) 0 1,2 3,4       2 x 2 x 2 x 2 x y ( c e c xe ) ( c e c xe ) 1 2 3 4

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend