octoberfest 2015 annual meeting ottawa october 31
play

Octoberfest 2015 Annual Meeting Ottawa, October 31-November 1 - - PowerPoint PPT Presentation

Stacks CATEGORICAL AND RINGS THEIR MORPHISMS OF ETTORE ALDROVANDI FLORIDA UNIVERSITY STATE Octoberfest 2015 Annual Meeting Ottawa, October 31-November 1 - Categories Ann ftamoi ) ( Regular ) > Picard Categorical Rings a ( Strictly


  1. Stacks CATEGORICAL AND RINGS THEIR MORPHISMS OF ETTORE ALDROVANDI FLORIDA UNIVERSITY STATE Octoberfest 2015 Annual Meeting Ottawa, October 31-November 1

  2. - Categories Ann ftamoi ) ( Regular ) > Picard Categorical Rings a ( Strictly ) ( Presentations ) Bimodubs Crossed Butterflies ) ( spans c- Moipbisms form ? What do categorical rings Classification Taxonomy Non Regular Cat . Rings arxiv Xiv 1501.07592 or 1501.04664 , ' TAC 15 ) 3-0 (

  3. Categorical in gwwpoids Ringo stack fp monphisms of fibered categories 1g L site a- / 8 8 × 8 Two idol structures to @ : - mono , = Picard ) ( like ( e +0,0 , ) is group . symmetric , distributive ( e 0 , ID +0,9 , , E ex @ @ - : with respect to Bimomoidal to 1,2 ,w : ( × *2)o(y*D Objects xi QZ = ( YOY ) x*(z*w)=(x*Do(x*w)

  4. Categorical in gwwpoids Ringo stack fp monphisms of fibered categories 1g L site a- / f 8 × 8 Two momoiowl structures to @ : - , about More like ( e +0,0 , ) is group . symmetric , this in a moment distributive ( 9 × 0 , ID +0,9 , E ex @ @ - : with respect to Bimomoidal to 1,2 ,w : ( × *2)o(y*D Objects xi QZ = ( YOY ) x*(z*w)=(x*Do(x*w)

  5. - like / Categorical About Group Groups 2- 6 C Co - admits apuseutatiom (9+0,9) , - module crossed Presha .f|g > Th 1 Ulm Cdu ) XGCU ) : • : ~ • [ COXC IG ] C ~- : Equivalence , p Tk Cas associated stock . T thin ( Folk B Naoki og ) E A - : . . . ,

  6. ⇐ - like / Categorical About Group Groups 2- Co. C admits apuseutatiom ( e ,o , g) , module Tfttemhftreet Presha .f|g > Th Ulm C.lu ) ,(U)1G(U ) : XC • : 1G]~±D gassed • [ : coxc Equivalence , associated stock " - symmetric anti C , { } Coxco : - • ,

  7. ⇐ - like / Categorical About Group Groups 2- Co. C admits apuseutatiom (9+0,9) , module Presha .f|g > Th Ulm C.lu ) XGCU )1G(U ) : • : Aroaossed ~ • [ COXC IG ] C ~- : Equivalence , associated stock ALTERNATING : { C , { } Coxco }°Dq= : - , • eq , ,

  8. - like / Categorical about Group Groups Abelian Groups < - admits ateusentation ( e , ⇒ ,g , Presha .f|g §x÷x9sIu4 > Th Ulm C.lu ) XGCU )1G(U ) : • : ~ • [ 16 ] C ~- : Coxc Equivalence , " associated stock ALTERNATING : { C , { } Coxco }°Dq= : - , • eq , , STAwDNGAgguMPT1°h.

  9. ( Back to ) Categorical Rings Definition 2- bimoduce C is crossed if Co a , with ) =L ) ( i ) ring ( Sha 1 , usually Co is of a . , bimodule C ii ) C , Co . - ' E C± PFEIFFER ( Jc CWD Ycnci ( dci ) : , ) C c = , ,

  10. ( Back to ) Categorical Rings D_ef.tw#m_ 2- bimodule C is crossed if Co a , with ) =L ) ( i ) ring ( Sha 1 , usually Co is of a . , bimodule C ii ) C , Co . - ' c- C± PFEIFFER ( Jc CWD Ycnci ( dci ) : , ) C c = , , is ) - theorem ( C Pstarrstcatyovud Ea : of L Ring Presentation -8 F Gec . Cussed Bimodnleeff

  11. ⇒ Morphism Picard -2 F of strictly orphism :C categorical rings : morphism underlying F B b/t :C D - stocks Picard strictly � 2 � ¥ E ° × 8 conditions IF + ext to % on A 2 × 2 D - *

  12. Morphism Picard 2 F of strictly orphism : C - categorical rings : morphism underlying F B b/t :C D - stocks Picard strictly By in ( sib ) ) auth Span Ch+( I E yv Co Bo , ND (DeCigme SGA 4 ,

  13. Morphism Picard -2 F of strictly orphism :C categorical rings : morphism underlying F B b/t :C D - stocks Picard strictly l§utteflyimCh+( ' SI ) ¥ C B , , 1¥ E v y < Co Bo

  14. Morphism Picard -2 F of strictly orphism :C categorical rings : morphism underlying F B b/t :C D - stocks Picard strictly l§utteflyimCh+( It ¥ SID c B colt JTB Hal , , E v v 0

  15. ⇒ Morphism Picard -2 F of strictly orphism :C categorical rings : morphism underlying F B b/t :C D - stocks Picard strictly � 2 � ¥ E ° × 8 conditions IF + ext to % on A 2 × 2 D - *

  16. Monphisms between the we need wssedbimodT µ Definition - Cussed Bimoohdhf Extension f Ring , homo T co E D ring . C By , , Is bilateral ideal E � 2 � B ( ) | ¥ | B ,2=|o % @ , ingenue E ✓ v so momsimgular - > \ z P , ti B Co 0

  17. Monphisms between the we need wssedbimodT µ Definition : ihnotexaot j•kzo\ Extension Ring Just : ← homo npsco E 0 ring . C B E dig � 1 � , , , Is bilateral ideal E � 2 � B ( ) | X ringbone | , % B ,2=|o @ , ingenue E ✓ v → so monsimyular z y P ti B Co 0

  18. Monphisms between the we need aossedbimodT µ Definition - e) b.) )=i(j( cis eilb , i ( b jle ifbpe ) ) lid = , exact not still j•kzo\ Extension Ring Just : ← homo npsco E 0 ring . C B E dig � 1 � , , , Is bilateral ideal E � 2 � B ( ) | X ringbone | , % B ,2=|o @ , ingenue E ✓ v → so monsimyular z y P ti B Co 0

  19. Monphisms between the we need aossedbim°dT µ Definition ÷ )=i( jlelb . ) ekk eilb ( iii ) , )=k( place ) , , )e=i( b .sk ) ) ( ii ifb in ) , nlc )e=k( QPKD , exact not still j•kao\ Extension Ring Just : ← homo Etc 0 ring . C 13 . # � 1 � E , , , Is bilateral ideal E � 2 � B ( ) | X ringbone | , % B ,2=|o @ , ingenue E ✓ v → so momsimgular z y P ti B Co 0

  20. Morphisms F F :@ B Ho±( GB ) form Tae moyohisms - agrowpoid G :C T I ex T e e ex e e fF) ⇒ G % FXF ( ⇒ )G × G | txt = g & 2 × 2 - × oD Mok 2 × 2

  21. Morphism F :@ B Ho±( GB ) form ophisms - agrowpoid #@B :C T I ex T e e ex e e fF) ⇒ G % / FxFf ⇒ fG × G ext = g & 2 × 2=02 Mok 2 × 2 do so butterflies S+(c : . ,BD C , t.ec#Bi/ ¥¥¥* .

  22. Morphis heeled ( ) ) 31 ( 2015 Ea TAC , T . Rings C B Picard Cat : of Strictly , G - p C - . > presentations 2 B - - B. , of gwupoids There is on equivalence Home ( e , B) ( c . ,BD tsp

  23. Morphisms Thereof ( Ea Tac 30-(2 × 51) , Picard 5 C B . Rings : Strictly cat of , 9 p - - co > presentations 2 B - B. - , Pw# equivalence of gwupoids There is on Hot ( QD ) . ,B tsspcc . ) B C , , ti " Bo o D - F

  24. Morphisms Thereof ( Ea Tac 30-(2 × 51) , Picard T C B . Rings : Strictly cat of , G p - - co > presentations 2 B - B. - , Pw# equivalence of gwupoids There is on Hott , B) . ,B tsspcc . ) B C , , Bo El l Stack fiber product f- Co fit I%3h,l ( cost ,bo ) ) , . f- A D bo ) Icc t( in . ) F

  25. Morphisms Thereof ( Ea Tac 30-(2 × 51) , Picard T C B . Rings : Strictly Cat of , G p - - c. > presentations 2 B - B. - , T.ro# . gwwps at Exact equivalence of gwupoids There is on Hot ( 50 . ,B tsspcc . ) B , ti , £ e Bo Co Coffin ) 't to . D 8 - F

  26. Morphisms Thereof ( Ea 30-(20151 ) TAC , Picard 5 C B . Rings : Strictly cat of , 9 p - - co > presentations 2 B - B. - , T.to#_ . gwwps Exact cat equivalence of gwupoids There is on Exact K # Hom- ( QB ) ( c . ,B tsp . ) C , , , yB £ . Bo Co Coffin ) 't to . D 8 - F

  27. Morphisms Thereof ( Ea Tac 30-(2 × 51) , Picard T C B . Rings : Strictly Cat of , G p - - c. > presentations 2 B - B. - , Pw# equivalence of gwupoids There is on Hott , B) . ,B tsspcc . ) B C , , i. Not exact , ⇒ of £¥k> Bo Co coxed 't to . D 8 - F

  28. newsprint llpg s ) Bicatcgoy bimodules crossed C C - Objects : * , . composition with ( C . ) $ . ,B ( Groupoids ) Moyshisms : * XM¥l( Sp_ ( D . ) × Sp_ ( C . ) . ,B . ,C s#(D . ) - . ,B Q Wm Dog

  29. newsprint llpg ) Bicatcgoy bimodules crossed C C - Objects : * , . composition with ( C . ) $ . ,B ( Groupoids ) Moyshisms : * Sp_ ( D . ) × Sp_ ( C . ) . ,B . ,C s#(D . ) - . ,B Xtdfs Wi → D§ M ' E E C E 't , o

  30. ftp.w#Gespomo6neBicatcgoYXM=d(D 2- Category Pica Stuitlypicardstaokyg ) : " ) has xp ,c( f) ( Deligme @ ,c(I ) pica Xvi :P ) ,sGa4 → , in : Imomoid Prt ) objects 2RmgG )

  31. radiophone llpg Bicatcgoy ) XII 2- Category Pica Striotlypicardstaokyg ) : " ) has xp ,c( f) ( Deligme @ ,c(I ) pica Xvi :P ) ,sGa4 → , in : Lmomoid Prt ) objects 2RmgG ) rings Categorical Ourstricteypiaerd =

  32. pomo6= needs llpg Bicatcgoy ) XM¥l(S : Strictly Picard stocky Pic ( s ) 2- Category " ) has , a (f) ( Deligme 4 @ c (f) xp Pic G) saa Xvi :P → , , , ( S ) in Pic : Imomoid objects 2 Ring ( f ) Picard rings Categorical Our = Strictly a bieqnivalemu Theory ( There is ibid . ) EA , 11M¥ (f) 2 Rings (8) A →→ Co] " 17 [ Cox C , C co - ,

  33. Shukla ,BarrBeck . Quillen Andrei , } bimoolule the Crossed to Back C , Crossed extension G → A → 0 O#MsC → , tltbimodule o → M A → o C - Co - - , up o → M → d 11 : 11 on E Equivalence n o to - - - ,

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend