nuclear structure and theory for precision beta decay
play

NUCLEAR STRUCTURE AND THEORY FOR PRECISION BETA DECAY EXPERIMENTS: - PowerPoint PPT Presentation

1 Beta Decay as a Probe of New Physics DORON GAZIT RACAH INSTITUTE OF PHYSICS HEBREW UNIVERSITY OF JERUSALEM NUCLEAR STRUCTURE AND THEORY FOR PRECISION BETA DECAY EXPERIMENTS: NUCLEAR SHAPE CORRECTIONS 2 COLLABORATORS COLLABORATORS


  1. 1 “Beta Decay as a Probe of New Physics” DORON GAZIT RACAH INSTITUTE OF PHYSICS HEBREW UNIVERSITY OF JERUSALEM NUCLEAR STRUCTURE AND THEORY FOR PRECISION BETA DECAY EXPERIMENTS: NUCLEAR SHAPE CORRECTIONS

  2. 2 COLLABORATORS COLLABORATORS IN THIS WORK Ayala Glick Magid Expt: Guy Ron, Yonatan Mishnayot, Ben Ohayon Michael Hass, Sergey Vaintraub, Ish Mukul

  3. 3 INTRODUCTION INTRODUCTION ▸ The standard model is incomplete: dark sector, neutrino masses. ▸ Finding signatures of beyond the standard model physics in quantum phenomena is one of the heralds of modern physics. ▸ LHC is the energy frontier. ▸ Nuclear phenomena are a precision frontier: ▸ New t tech chniques a allow u unprece cedented e experimental a accu ccuracy cy. ▸ Need a an a acco ccompanying t theoretica cal e effort t to a analyze cs . experimental r results a and p pinpoint n new p physics ▸ It’s not a very rewarding job…

  4. 4 INTRODUCTION BSM EFFORTS USING NUCLEAR BETA DECAYS b decays Precision spectrum studies Precision Correlation Studies Neutrino hypothesized Parity breaking KATRIN V-A structure

  5. 5 INTRODUCTION BSM EFFORTS USING NUCLEAR BETA DECAYS b decays Precision spectrum studies Precision Correlation Studies Neutrino hypothesized Parity breaking KATRIN V-A structure

  6. 6 INTRODUCTION BSM EFFORTS USING NUCLEAR BETA DECAYS b decays Precision spectrum studies Precision Correlation Studies ”New Physics” searches using beta decays have been moving back and forth, from ▸ spectrum to correlation studies. Atomic traps acted as the catalyst for precision correlation studies, and many ▸ experiments have been constructed since ~2005. In the last couple of years, the seesaw seems to tilt towards precision spectrum ▸ studies again, based on theoretical expectations for the size of the effect.

  7. 7 PRECISION B -DECAY STUDIES TO PINPOINT BSM EFFECTS d 5 ω β ∓ Differential b decay rate d � k / 4 π d � ν / 4 π d ϵ = � ( ϵ ) · � ( q , ⃗ β · ˆ ν ). ⃗ = $ Momentum transfer ⃗ neutrino momentum % , 𝛾 particle momentum to energy ratio 𝜉 𝛾 � ( ϵ ) = 2 G 2 2 � J + 1 ×(𝑑𝑝𝑠𝑠𝑓𝑑𝑢𝑗𝑝𝑜𝑡) Nuclear independent part � J ( 2 J i + 1 )( ϵ 0 − ϵ ) 2 k ϵ F ( ± ) ( Z f , ϵ ), π 2 Classification of b decays Δ𝐾 ) = 0 + (Super)allowed - Fermi transition ∝ 𝑟 2 Δ𝐾 ) = 0,1 + Allowed – Fermi/Gamow-Teller Δ𝐾 ) = 0,1,2 / ∝ 𝑟 3 Unique First forbidden transition

  8. 8 PRECISION B -DECAY STUDIES TO PINPOINT BSM EFFECTS WHERE DOES NUCLEAR STRUCTURE ENTER? NUCLEAR STRUCTURE DEPENDENT NUCLEAR STRUCTURE DEPENDENT

  9. 9 PRECISION B -DECAY STUDIES TO PINPOINT BSM EFFECTS d 5 ω β ∓ Differential b decay rate d � k / 4 π d � ν / 4 π d ϵ = � ( ϵ ) · � ( q , ⃗ β · ˆ ν ). ⃗ = $ Momentum transfer ⃗ neutrino momentum % , 𝛾 particle momentum to energy ratio 𝜉 𝛾 ∝ 𝑟 ? � ˆ x ) ˆ d ⃗ J 0 ( ⃗ C J M ( q ) = x j J ( qx ) Y J M ( ˆ x ) Nuclear dependent part ∝ 𝑟 ?/3 E J M ( q ) = 1 � x ) ] · ˆ x ⃗ ∇ × [ j J ( qx ) ⃗ ⃗ ˆ d ⃗ J ( ⃗ Y J J M ( ˆ x ) q Assuming V-A structure � ∝ 𝑟 ? x ) · ˆ � ( q , ⃗ x j J ( qx ) ⃗ ˆ ⃗ β · ˆ ν ) d ⃗ J ( ⃗ Y J J M ( ˆ M J M ( q ) = x ) ⎧ �� ⃗ � J ⎨ A ?B � ��� E J ∥⟩ | 2 + | ⟨∥ ˆ L J M ( q ) = i � | ⟨∥ ˆ M J ∥⟩ | 2 � x ) ] · ˆ ∝ 𝐹 � ˆ � 1 − ν · ˆ β · ˆ = q q x ⃗ ⃗ ˆ d ⃗ J ( ⃗ ∇ [ j J ( qx ) Y J M ( ˆ x ), 2 � J + 1 q ⎩ J ≥ 1 � �� M J ∥⟩ ∗ ν − ⃗ 2 ℜ⟨∥ ˆ E J ∥⟩⟨∥ ˆ ± ˆ q · ˆ β J ≥ 1 �� ⃗ �� �� � ν · ⃗ L J ∥⟩ | 2 | ⟨∥ ˆ � ˆ 1 − ˆ ν · ˆ β · ˆ + β + 2 q q J ≥ 0 � � ν · ⃗ | ⟨∥ ˆ C J ∥⟩ | 2 + 1 + ˆ β � � L J ∥⟩ ∗ �� ν + ⃗ ℜ⟨∥ ˆ C J ∥⟩⟨∥ ˆ − 2 ˆ ˆ q · (4) β , We have similar expressions for Tensor and Scalar structures, and interferences.[Glick-Magid, Gazit, unpublished]

  10. 10 PRECISION B -DECAY STUDIES TO PINPOINT BSM EFFECTS d 5 ω β ∓ Differential b decay rate d � k / 4 π d � ν / 4 π d ϵ = � ( ϵ ) · � ( q , ⃗ β · ˆ ν ). ⃗ = $ Momentum transfer ⃗ neutrino momentum % , 𝛾 particle momentum to energy ratio 𝜉 𝛾 ∝ 𝑟 ? � ˆ x ) ˆ d ⃗ J 0 ( ⃗ C J M ( q ) = x j J ( qx ) Y J M ( ˆ x ) Nuclear dependent part ∝ 𝑟 ?/3 E J M ( q ) = 1 � x ) ] · ˆ x ⃗ ∇ × [ j J ( qx ) ⃗ ⃗ ˆ d ⃗ J ( ⃗ Y J J M ( ˆ x ) q Assuming V-A structure � ∝ 𝑟 ? x ) · ˆ � ( q , ⃗ x j J ( qx ) ⃗ ˆ ⃗ β · ˆ ν ) d ⃗ J ( ⃗ Y J J M ( ˆ M J M ( q ) = x ) ⎧ �� ⃗ � J ⎨ A ?B � ��� E J ∥⟩ | 2 + | ⟨∥ ˆ L J M ( q ) = i � | ⟨∥ ˆ M J ∥⟩ | 2 � x ) ] · ˆ ∝ 𝐹 � ˆ � 1 − ν · ˆ β · ˆ = q q x ⃗ ⃗ ˆ d ⃗ J ( ⃗ ∇ [ j J ( qx ) Y J M ( ˆ x ), 2 � J + 1 q ⎩ J ≥ 1 � �� M J ∥⟩ ∗ ν − ⃗ 2 ℜ⟨∥ ˆ E J ∥⟩⟨∥ ˆ ± ˆ q · ˆ β J ≥ 1 �� ⃗ �� �� � ν · ⃗ L J ∥⟩ | 2 | ⟨∥ ˆ � ˆ 1 − ˆ ν · ˆ β · ˆ + β + 2 q q J ≥ 0 � � ν · ⃗ | ⟨∥ ˆ C J ∥⟩ | 2 + 1 + ˆ β � � L J ∥⟩ ∗ �� ν + ⃗ ℜ⟨∥ ˆ C J ∥⟩⟨∥ ˆ − 2 ˆ ˆ q · (4) β , We have similar expressions for Tensor and Scalar structures, and interferences.[Glick-Magid, Gazit, unpublished]

  11. 11 PRECISION B -DECAY STUDIES TO PINPOINT BSM EFFECTS Δ𝐾 ) = 0,1 + e.g., allowed transitions d ! V − A = 4 1 ⇡ 2 k ✏ ( W 0 − ✏ ) 2 d ✏ d Ω k d Ω ⌫ 2 J i + 1 · 4 ⇡ 4 ⇡ Fermi 2 8 | C V | 2 + � � 0 � C � � > 2 V < ⌘ � � � E� ⇣ D � � ˆ ⌫ · ~ C V · 1 + ˆ � J f � J i � � � � 0 2 � � > : Gamow-Teller 2 9 | C A | 2 + � � 0 � C � � > ✓ 1 − 1 ◆ � 2 A � � E� = D � ⌫ · ~ � ˆ L A + 3 3 ˆ + O ( q ) � J f � J i � � � � 1 2 � � > ; Correlation coefficient ⇣ Assumptions: vanishing momentum transfer (q=0).

  12. 12 PRECISION B -DECAY STUDIES TO PINPOINT BSM EFFECTS Δ𝐾 ) = 0,1 + e.g., allowed transitions V+T d ! V − A = 4 1 ⇡ 2 k ✏ ( W 0 − ✏ ) 2 d ✏ d Ω k d Ω ⌫ 2 J i + 1 · 4 ⇡ 4 ⇡ 2 8 | C V | 2 + � � 0 � C � � > 2 V < ⌘ � � � E� ⇣ D � � ˆ ⌫ · ~ C V · 1 + ˆ � J f � J i � � � � 0 2 Assuming V+T structure � � > : 2 9 + 𝐷 E F + 𝐷 E | C A | 2 + � � G F 0 � C � � > ✓ 1 − 1 ◆ � 2 A � � E� = D � ⌫ · ~ � ˆ L A + + 3 3 ˆ + O ( q ) � J f � J i � � � � 2 1 2 � � > ; ⇣

  13. 13 PRECISION B -DECAY STUDIES TO PINPOINT BSM EFFECTS e.g., allowed transitions V-A WITH T CORRECTIONS: (Gamow–Teller decays), � ∝ ( 1 + bm e ϵ + a β ν ⃗ ν ) ⟨∥ β · ˆ where m is the electron 1 − | C T | 2 +| C ′ C T + C ′ T | 2 − 1 a β ν ≈ � � T , and b = 2 3 | C A | 2 C A the relative strength of the tensor (pseudo-t Caveats: a) Sensitive to combination of tensor couplings, with spectrum averaging of energy, thus in a specific nucleus – the sensitivity to BSM couplings is QUADRATIC… b) Spectrum, i.e., integration over angle, sensitive to Fierz term, i.e., insensitive to fully right handed couplings. [14] M. González-Alonso, O. Naviliat-Cuncic, Kinematic sensitivity to the Fierz term of β -decay differential spectra, Phys. Rev. C 94 (2016) 035503. [15] B.R.

  14. � PRECISION B -DECAY STUDIES TO PINPOINT BSM EFFECTS Unique first forbidden Δ𝐾 ) = 2 / � ( q , ⃗ β · ˆ ν ) ⎧ �� ⃗ � J ⎨ � ��� E J ∥⟩ | 2 + | ⟨∥ ˆ M J ∥⟩ | 2 � | ⟨∥ ˆ � ˆ � 1 − ν · ˆ β · ˆ ∝ 𝑟 ? = q q � 2 � J + 1 ˆ x ) ˆ d ⃗ J 0 ( ⃗ x j J ( qx ) Y J M ( ˆ C J M ( q ) = x ) 14 ⎩ J ≥ 1 � �� M J ∥⟩ ∗ ν − ⃗ 2 ℜ⟨∥ ˆ E J ∥⟩⟨∥ ˆ ∝ 𝑟 ?/3 ± ˆ E J M ( q ) = 1 � q · ˆ β x ) ] · ˆ x ⃗ ∇ × [ j J ( qx ) ⃗ ⃗ ˆ d ⃗ J ( ⃗ Y J J M ( ˆ x ) J ≥ 1 q �� ⃗ �� �� � ν · ⃗ � | ⟨∥ ˆ L J ∥⟩ | 2 � ˆ ∝ 𝑟 ? 1 − ˆ + β + 2 ν · ˆ β · ˆ x ) · ˆ q q x j J ( qx ) ⃗ ⃗ ˆ d ⃗ J ( ⃗ M J M ( q ) = Y J J M ( ˆ x ) J ≥ 0 L J M ( q ) = i � � � 𝑲 ν · ⃗ x ) ] · ˆ | ⟨∥ ˆ C J ∥⟩ | 2 1 + ˆ x ⃗ ⃗ + ˆ β M 𝑲𝑵 d ⃗ J ( ⃗ ∇ [ j J ( qx ) Y J M ( ˆ ≈ 𝑭 x ), 𝑲 + 𝟐 q � � L J ∥⟩ ∗ �� ν + ⃗ ℜ⟨∥ ˆ C J ∥⟩⟨∥ ˆ − 2 ˆ q · ˆ (4) β , C T + C ′ m e � ( q , ⃗ T ν ) ∝ 1 ± 2 γ 0 β · ˆ ϵ C A 1 − | C T | 2 + | C ′ T | 2 �� ⃗ − 1 ν · ⃗ � � ˆ � � ˆ ��� � − ν · ˆ β · ˆ 2 β q q . | C A | 2 5 (11) Glick-Magid, DG, et al, Beta spectrum of unique first forbidden decays as a novel test for fundamental symmetries, Phys. Lett. B767, 285 (2017)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend