new muon beam missing momentum experiments fnal g 2 dark
play

New Muon Beam Missing Momentum Experiments @ FNAL ( g 2) & - PowerPoint PPT Presentation

New Muon Beam Missing Momentum Experiments @ FNAL ( g 2) & Dark Matter Yoni Kahn, Gordan Krnjaic Nhan Tran, Andrew Whitbeck arXiv:1803.XXXXX Precision Science Discussion Mar 20, 2018 Overview & Motivation 1) Model independent


  1. New Muon Beam Missing Momentum Experiments @ FNAL ( g − 2) µ & Dark Matter Yoni Kahn, Gordan Krnjaic Nhan Tran, Andrew Whitbeck arXiv:1803.XXXXX Precision Science Discussion Mar 20, 2018

  2. Overview & Motivation 1) Model independent test of g-2 anomaly 2) Probe models of muon-philic dark matter

  3. Overview & Motivation 1) Model independent test of g-2 anomaly 2) Probe models of muon-philic dark matter

  4. Muon Anomalous Magnetic Moment Longstanding ∼ 3 . 7 − 4 . 1 σ anomaly in ( g − 2) µ Theory updates have only widened disagreement a µ ≡ a µ (obs) − a µ (SM) = (28 . 8 ± 8 . 0) × 10 − 10 Mangano, Keshavarzi, Nomura, Teubner 1802.02995 a µ ≡ a µ (obs) − a µ (SM) = (31 . 3 ± 7 . 7) × 10 − 10 Jegerlehner 1705.00263 Remains a great hint of possible new physics Soon FNAL g-2 experiment will shrink error bars

  5. Many popular new physics models are now ruled out… − 2 10 K → π ν ν ε (g-2) ± 2 σ µ B A B AR 2017 favored 3 − 10 (g-2) NA64 e 4 − 10 − 3 2 1 − − 10 10 10 1 10 m (GeV) A' BABAR:1702.03327 Cosmic Visions 1707.04591 Weak scale models also under tension (e.g. MSSM) Conclusions based on first-generation measurements Motivates better understanding muon-philic interactions

  6. Best viable BSM explanation: new muon-philic particles µ γ ? µ New particle couples to muons & decays invisibly How do we directly test this scenario?

  7. Basic Setup: muon beam incident on fixed target µ ( E ⌧ 15 GeV) 20 CM M AGNET EC AL µ ( E ∼ 15 GeV) TAGGING TRACKER μ - HC AL RECOIL / E TRACKER µ − µ − V 6 E Trigger missing energy Z veto on all other SM particles Kahn, GK, Tran, Whitbeck 1803.XXXX Chen, Pospelov, Zhong 1701.07437 Gninenko, Krasnikov, Matveev 1412.1400

  8. Generic test of light new particles in ( g − 2) µ Phase 1 ∼ 10 10 MOT Phase 2 ∼ 10 13 MOT

  9. Overview & Motivation 1) Model independent test of g-2 anomaly 2) Probe models of muon-philic dark matter

  10. Zeroth Order Outstanding Problems Matter Asymmetry Inflation Neutrino Masses Accelerated Cosmic Expansion What is this stuff ? Also Quantum Gravity 2

  11. DM Prognosis? DM Prognosis? Bad news: DM-SM interactions are not obligatory If nature is unkind, we may never know the right scale must be composite must be bosonic m P l ∼ 10 − 20 eV ∼ 100 M � ∼ 10 19 GeV ∼ 100 eV m DM Good news: most discoverable DM candidates are in thermal equilibrium with us in the early universe Why is this good news?

  12. DM Prognosis? DM Prognosis? Bad news: DM-SM interactions are not obligatory If nature is unkind, we may never know the right scale must be composite must be bosonic m P l ∼ 10 − 20 eV ∼ 100 M � ∼ 10 19 GeV ∼ 100 eV m DM Good news: most discoverable DM candidates are in thermal equilibrium with us in the early universe Why is this good news?

  13. Thermal Equilibrium Advantage #0: Hard to avoid L e ff = g 2 χγ µ χ )( ¯ If interaction rate exceeds Λ 2 (¯ f γ µ f ) Hubble expansion T 2 ∼ g 2 T 5 � � H ∼ n σ v ⇒ = � Λ 4 m P l � T = m χ Equilibrium is easily achieved in the early universe if ◆ 3 / 2 ◆ 2 ✓ GeV ✓ Λ g & 10 − 8 10 GeV m χ Applies to nearly all discoverable models (except axions)

  14. Thermal Equilibrium Advantage #1: Minimum Annihilation Rate DM is overproduced, need to annihilate away the excess! d 3 p Ω χ ⇠ h σ v i − 1 Z g i n (eq . ) e E/T ± 1 ∼ T 3 DM = (2 π ) 3 Observed density requires σ v sym ∼ 3 × 10 − 26 cm 3 s − 1 Freeze out *Predictive rate *Known initial condition *Insensitive to high scales Griest et. al. 1992

  15. Thermal Equilibrium Thermal Equilibrium Advantage #2: Narrows Viable Mass Range Advantage #2: Narrows Mass Range m DM nonthermal nonthermal ∼ 10 − 20 eV ∼ 100 M � m P l ∼ 10 19 GeV < MeV < 10 keV > 100 TeV GeV m Z MeV { too much { Neff / BBN too hot Light DM “WIMPs” Most of current Direct Detection (Alan Robinson) ```` Search program Indirect Detection (Alex Drlica-Wagner) Colliders (Yang Bai) 18

  16. Decades of direct detection: null results SuperCDMS Soudan Low Threshold XENON 10 S2 (2013) 10 � 39 CDMS-II Ge Low Threshold (2011) 10 � 3 CoGeNT P (2012) 10 � 40 10 � 4 I C CDMS Si O (2013) 2 SIMPLE (2012) 5 10 � 41 10 � 5 WIMP � nucleon cross section � cm 2 � 0 ) 2 1 0 WIMP � nucleon cross section � pb � - 2 DAMA ( P C P U ZEPLIN-III (2012) O 3 C F 8 10 � 42 CRESST 10 � 6 ) 9 0 0 2 ( e S G I u I S p SuperCDMS Soudan M e D C r 1 ) 1 C 0 2 ( S 10 � 43 D S 10 � 7 I E W M L E D E ) 2 S 1 0 S 2 N ( O 0 L DarkSide 50 0 N A 1 B n o EU n e X T 10 � 44 10 � 8 R I N LUX O PICO250-CF3I C 7 Be C A T T E O H T S E R R N E I N G Neutrinos 8 B 10 � 45 10 � 9 Xenon1T Neutrinos DEAP3600 DarkSide G2 10 � 46 10 � 10 Z L 10 � 47 10 � 11 (Green&ovals)&Asymmetric&DM&& (Violet&oval)&Magne7c&DM& G T TERI N A C (Blue&oval)&Extra&dimensions&& T S s o 10 � 48 N 10 � 12 n R E i r t E u H e N O (Red&circle)&SUSY&MSSM& C B N O S IN D R U T d E n &&&&&MSSM:&Pure&Higgsino&& N a c i r e h p s 10 � 49 o 10 � 13 m &&&&&MSSM:&A&funnel& t A &&&&&MSSM:&BinoEstop&coannihila7on& &&&&&MSSM:&BinoEsquark&coannihila7on& 10 � 14 10 � 50 & 1 10 100 1000 10 4 WIMP Mass � GeV � c 2 � Cushman et al. arXiv:1310.8327

  17. Null LHC results cast doubt on weak scale SUSY Where else should we look?

  18. Thermal Equilibrium How to test most elusive light DM models? Advantage #2: Narrows Mass Range m DM nonthermal nonthermal ∼ 10 − 20 eV ∼ 100 M � m P l ∼ 10 19 GeV < MeV < 10 keV > 100 TeV GeV m Z MeV { too much { Neff / BBN too hot Light DM “WIMPs” Most of current ? Direct Detection (Alan Robinson) ```` Search program Indirect Detection (Alex Drlica-Wagner) Colliders (Yang Bai) 18

  19. Light DM is different! LDM must be a SM singlet Otherwise would have been discovered (LEP etc.) LDM needs new forces Would be overproduced without light “mediators” χ f σ v ∼ α 2 m 2 ∼ 10 − 29 cm 3 s − 1 ⇣ m χ ⌘ 2 W, Z χ m 4 GeV Z χ f Lee/Weinberg ‘79 How do we look for new forces?

  20. Emerging New Program of Light DM Experiments Scalar Elastic DM ( Kinetic Mixing ) 0 0 10 - 6 COHERENT 1 SHiP / 0 1 N O X E N N 10 - 7 o D o E B i X B n i M 10 - 8 BaBar y = ϵ 2 α D ( m χ / m A' ) 4 10 - 9 MMAPS 10 - 10 CRESST II SBN π E137 NA64 10 - 11 Belle II LSND t 10 - 12 e g r a T c i l e LDMX R SENSEI r a l a 10 - 13 c S Super CDMS e N NEWS B S SNOLAB 10 - 14 10 - 15 Cosmic Visions Report 1707.04591 10 - 16 10 2 10 3 1 10 m χ [ MeV ] … but all probe electron & proton couplings!

  21. Major Blind Spot: Muon-Philic Dark “Mediators” µ, τ µ χ Z 0 χ µ µ, τ New force couple DM to muons, sets relic abundance � � L ⊃ Z 0 µ γ ν µ + g χ ¯ χγ ν χ g µ ¯ ν e.g. — gauged U(1) muon-tau number, no electron coupling (mediator can be same Z’ responsible for g-2 anomaly)

  22. Same setup as before: radiate missing energy µ ( E ⌧ 15 GeV) 20 CM M AGNET EC AL µ ( E ∼ 15 GeV) TAGGING TRACKER μ - HC AL RECOIL / E TRACKER µ − µ, τ ¯ µ − χ µ χ A Z 0 Z 0 χ χ µ µ, τ Tests same interaction that sets relic abundance

  23. Cover nearly all predictive thermal DM models

  24. Cover nearly all predictive thermal DM models Including common g-2 regions

  25. Summary Muonic forces poorly constrained New fixed-target missing momentum experiment Trigger on large missing energy, veto SM particles Utilize existing muon sources beams at Fermilab Phase 1: 1e10 MOT robustly test g-2 BSM Phase 2: 1e13 MOT cover thermal dark matter

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend