nuclear collisions
play

nuclear collisions Tom Trainor University of Washington ISMD 2017 - PowerPoint PPT Presentation

Collectivity and manifestations of minimum-bias jets in high-energy nuclear collisions Tom Trainor University of Washington ISMD 2017 Tlaxcala, Mexico Agenda What is collectivity? The two-component (soft + hard) model (TCM) p-p


  1. Collectivity and manifestations of minimum-bias jets in high-energy nuclear collisions Tom Trainor University of Washington ISMD 2017 Tlaxcala, Mexico

  2. Agenda • What is collectivity? • The two-component (soft + hard) model (TCM) • p-p jets, spectra, correlations and the TCM • p-p 𝑞 𝑢 TCM • p- Pb 𝑞 𝑢 TCM arXiv:1708.09412 • Pb-Pb 𝑞 𝑢 TCM • Naïve Glauber model of p -Pb collisions • PYTHIA – p-p model assumptions vs reality 2

  3. What is Collectivity? collectivity  countable collection, any correlations  collectivity e.g. dijets = collective phenomenon! several mechanisms may produce correlations our task is to identify them via data analysis 3

  4. Two-component Model – TCM hadron production in p-p collisions near midrapidity 𝝇 𝟏 = 𝝇 𝒕 + 𝝇 𝒊 charge densities: soft + hard soft component SC: projectile-nucleon dissociation participant low- x gluons  𝝇 𝒕  log(√s/10 GeV) hard component HC: large- angle scattered gluons → dijets 𝝇 𝒊 ≈ a a = O (0.01) 𝟑 MB jet fragments: 𝝇 𝒕 (noneikonal) hadron production in A-B collisions follows suite: 𝑸 𝒖 = (𝑶 𝒒𝒃𝒔𝒖 /𝟑) 𝒐 𝒕𝑶𝑶 𝒒 𝒖𝒕𝑶𝑶 + 𝑶 𝒄𝒋𝒐 𝒐 𝒊𝑶𝑶 𝒒 𝒖𝒊𝑶𝑶 extensive 𝑸 𝒖 𝒐 𝒕 = 𝒒 𝒖𝒕 + 𝒚 𝒐 𝒕 𝝃 𝒐 𝒕 𝒒 𝒖𝒊𝑶𝑶 ( 𝒐 𝒕 ) 4

  5. QCD Jets and p - p p t Spectra 𝑸 𝑭 𝑸 𝒒|𝑭 p-p  e-e 𝑸 𝑭 𝑸 𝒒 = p-p ∞ 𝑸 𝒒|𝑭 𝑸(𝑭) dE 𝑭 𝒏𝒋𝒐 3 GeV universal form FF – fragmentation functions JS – jet spectra PRD 89, 094011 (2014) PRD 74, 034012 (2006) noneikonal UA1 𝝇 𝒊 ≈ a 𝟑 𝝇 𝒕 𝑸 𝒒 : NSD PYTHIA 200 GeV 200 GeV JS  FF = H hard components 200 GeV dijet production PRD 93, 014031(2016) JPHYSG 42, 085105 (2015) 5

  6. p - p Angular Correlations – 2D Model Fits two-particle correlations PRD 93, 014031 (2016) PoS CFRNC2006, 004 (2006) no p t cuts n = 6 H S H ∆𝛓/ 𝛓 𝐬𝐟𝐠 ∆𝛓/ 𝛓 𝐬𝐟𝐠 y t  y t p t ≈ 0.6 GeV/c high multiplicity dijets + quad per-participant (per low- x gluon) model-parameter trends S H H Q AS 1D peak LPHD SS 2D peak A Q0 𝝇 𝒕 = soft  hard (dijets)  𝟑 quadrupole  𝟒 𝝇 𝒕 𝝇 𝒕 𝝇 𝒕 6

  7. p-p p t Spectrum Hard Component HC energy dependence lower p t cut JPHYSG 44, 44, 0750 5008 08 (201 017) 7) 𝒒 𝒖𝒊𝟏 QCD jets 𝝄 ′ 𝒒 𝒖𝒕 𝝇 𝒕 ≈ 𝟑 𝝇 𝒕𝑶𝑻𝑬 𝜷 ′ / 𝒐 𝒕 𝑸 𝒖𝒕 𝝇 𝒊 ≈ a 𝟑 𝝇 𝒕 ′ = 𝒒 𝒖𝒊𝟏 𝒒 𝒖𝒕 𝒒 𝒖𝒕 /𝝄 spectrum HCs 1 HC n ch 6 dependence 1 SC density: spectrum HCs 𝝇 𝒕 = 𝒐 𝒕 /𝚬𝜽 HC model parameters vs n ch PRD 93, 014031(2016) (biased jet spectra) 7

  8. p-p 𝑞 𝑢 TCM 𝒒 𝒖𝒊𝟏 ALICE: PLB 727, 371(2013) arXiv:1708.09412 ALICE 𝒒 𝒖 ′ 𝒒 𝒖𝒊 𝒒 𝒖𝒊 𝒒 𝒖 ′ ALICE ′ 𝒒 𝒖𝒕 UA1 200 GeV STAR 𝒒 𝒖𝒕 𝒒 𝒖𝒕 STAR 𝝇 𝟏 = 𝝇 𝒕 = ′ / 𝒐 𝒕 = 𝝄 + 𝒚(𝒐 𝒕 ) 𝒒 𝒖𝒊 (𝒐 𝒕 , √s ) 𝒒 𝒖𝒊 𝒐 𝒕 : n ch 𝒐 𝒅𝒊 𝝄 ≈ 0.76 -0.80 dependence, (takeaway 𝒚 𝒐 𝒕 , √s ≡ 𝒐 𝒊 / 𝒐 𝒕 ≈ 𝜷( √s ) 𝝇 𝒕 spectrum HC from p-p ) 𝒒 𝒖𝒕 +𝒚(𝒐 𝒕 ) ′ ≈ 𝒒 𝒖𝒊 (𝒐 𝒕 ) ′ ′ / 𝒐 𝒅𝒊 = 𝑸 𝒖 𝒒 𝒖 direct correspondence: 𝝄+𝒚(𝒐 𝒕 ) 𝒒 𝒖𝒊 vs spectrum HC ′ 𝒐 𝒅𝒊 ′ ≈ 𝒒 𝒖𝒕 + 𝒚(𝒐 𝒕 , √s ) 𝒒 𝒖𝒊 (𝒐 𝒕 , √s ) 𝒒 𝒖 𝒐 𝒕 vs isolated QCD jets 8

  9. p- Pb 𝑞 𝑢 TCM a [ 𝝇 𝒕𝟏 + 𝒏 𝟏 ( 𝝇 𝒕 − 𝝇 𝒕𝟏 ) ] PLB 727, 371(2013) arXiv:1708.09412 𝒒 𝒖 ′ 𝒒 𝒖 ′ 𝒏 𝟏 ≈ 0.1 𝝇 𝒕𝟏 , 𝒏 𝟏 ) ( 𝝇 𝒕𝟏 ≈ 15 𝑸 𝒖 𝒐 𝒕 /𝒐 𝒕 ′ 𝒒 𝒖𝒕 𝒒 𝒖𝒕 𝝇 𝒕 = 𝝇 𝟏 = ′ / 𝒐 𝒕 = 𝝄 + 𝒚(𝒐 𝒕 )𝝃(𝒐 𝒕 ) 𝒐 𝒅𝒊 ′ = 𝒒 𝒖𝒕 +𝒚(𝒐 𝒕 )𝝃(𝒐 𝒕 ) 𝒒 𝒖𝒊𝑶𝑶 (𝒐 𝒕 ) ′ ′ / 𝒐 𝒅𝒊 𝑸 𝒖 = 𝒒 𝒖 𝝄+𝒚(𝒐 𝒕 )𝝃(𝒐 𝒕 ) 𝝇 𝒕 = (𝑶 𝒒𝒃𝒔𝒖 /𝟑) 𝝇 𝒕𝑶𝑶 (𝒐 𝒕 ) * 𝑸 𝒖 𝒐 𝒕 /𝒐 𝒕 = ′ 𝒐 𝒅𝒊 𝒚 𝒐 𝒕 ≡ 𝝇 𝒊𝑶𝑶 𝒐 𝒕 / 𝝇 𝒕𝑶𝑶 (𝒐 𝒕 ) ′ = 𝒒 𝒖 𝒒 𝒖𝒕 + 𝒚(𝒐 𝒕 )𝝃(𝒐 𝒕 ) 𝒒 𝒖𝒊𝑶𝑶 (𝒐 𝒕 ) ≈ 𝜷 𝝇 𝒕𝑶𝑶 𝒐 𝒕 𝒐 𝒕 assume: 𝑶 𝒒𝒃𝒔𝒖 /𝟑 = 𝜷 𝝇 𝒕 / 𝒚 𝒐 𝒕 𝒒 𝒖𝒊𝑶𝑶 (𝒐 𝒕 ) ≈ 𝒒 𝒖𝒊𝟏 p-p value 𝑶 𝒒𝒃𝒔𝒖 = 𝑶 𝒄𝒋𝒐 + 𝟐 𝝃 ≡ 𝟑𝑶 𝒄𝒋𝒐 /𝑶 𝒒𝒃𝒔𝒖 no jet modification 9

  10. 𝑞 𝑢 TCM – I Pb-Pb fluctuations PRC 91, 044905(2015) ST: sharp transition 𝝇 𝟏 𝝇 𝒕 = 𝝇 𝒕 = x pp ? PRL 106, 032301(2011) x pp ? ST: PRC 86, 064902(2012) Glauber: 𝝇 𝒕𝑶𝑶 ) 𝟐/𝟒 𝝃 ( 𝒐 𝒕 ) ≈ ( TCM for A-A yield vs centrality: 𝝇 𝒕 / (𝑶 𝒒𝒃𝒔𝒖 /𝟑) 𝝇 𝟏 = 𝝇 𝒕𝑶𝑶 [𝟐 + 𝒚 𝝃 𝝃] 𝒚 ( 𝒐 𝒕 ) = 𝒚 [ 𝝃 ( 𝒐 𝒕 )] obtain from data above: peripheral Pb-Pb follows p-p 𝒚 𝝃 = 𝒚 𝒒𝒒 + 𝟏. 𝟐𝟓𝟑 − 𝒚 𝒒𝒒 × more-central Pb-Pb shows ST: jet modification 𝟐 + tanh[ 𝝃 − 𝟑. 𝟒 /𝟏. 𝟔] /2 PRC 86, 064902(2012) 10

  11. 𝑞 𝑢 TCM – II Pb-Pb 𝒒 𝒖𝒊𝟏 PLB 727, 371(2013) arXiv:1708.09412 𝒒 𝒖 ′ 𝒒 ′ 𝒒 ′ 𝒒 ′ ′ 𝒒 𝒖𝒊𝑶𝑶 (𝒐 𝒕 ) 𝒒 𝒖𝒕 x pp ? ′ = 𝒒 𝒖𝒕 +𝒚(𝒐 𝒕 )𝝃(𝒐 𝒕 ) 𝒒 𝒖𝒊𝑶𝑶 (𝒐 𝒕 ) ′ ′ / 𝒐 𝒅𝒊 = new information from Pb-Pb: 𝑸 𝒖 𝒒 𝒖 𝝄+𝒚(𝒐 𝒕 )𝝃(𝒐 𝒕 ) 𝒒 𝒖𝒊𝑶𝑶 (𝒐 𝒕 ) follows p-p trend given Glauber 𝝃 ( 𝒐 𝒕 ) solve for: for peripheral, 𝒒 𝒖𝒊𝑶𝑶 𝒐 𝒕 ≈ 𝒚 𝒐 𝒕 𝑸 𝒖𝒊𝑶𝑶 /𝒐 𝒕𝑶𝑶 falls to saturation value for central given 𝒚 ( 𝒐 𝒕 ) solve for: minimum is 73% of maximum 𝒒 𝒖𝒊𝑶𝑶 (𝒐 𝒕 ) 11

  12. 𝑞 𝑢 Data Lessons from three successive collision systems • p-p 𝒒 𝒖𝒊 (𝒐 𝒕 , √s ) trends agree with spectrum HC and MB dijets • p-p dijet production is noneikonal, centrality not relevant • p -Pb 𝒒 𝒖 (𝒐 𝒕 ) establishes factorization of A-B Glauber and N-N noneikonal • p -Pb 𝒒 𝒖 data confirm MB dijets dominate 𝒒 𝒖 (𝒐 𝒕 ) trends • Pb-Pb 𝒒 𝒖 data confirm that naïve Glauber dominates A-A collisions, but peripheral A-A collisions follow p-p trends • Pb-Pb 𝒒 𝒖𝒊𝑶𝑶 𝒐 𝒕 trend confirms jets are modified above ST • Jets still dominate structure in more-central Pb-Pb collisions arXiv:1708.09412 12

  13. Naïve Glauber Model for p -Pb 𝒆𝑸/𝒆𝒐 𝒚 uncertainty? 𝟐 − 𝝉 𝝉 𝟏  100 𝑶 𝒒𝒃𝒔𝒖 = 𝑶 𝒄𝒋𝒐 + 𝟐 𝐣𝐨 𝒒 − 𝐁 PLB 727, 371(2013) n x “[ n ch ] at mid-rapidity scales linearly with [N part ]” 𝒆𝑸/𝒆𝒐 𝒚 → (𝟐/𝝉 𝟏 ) 𝒆𝝉/𝒆𝒐 𝒚 assumes: PLB 727, 371(2013) black points derived from n ch , N part , N bin , b Glauber values in b 0 ≈ 8 fm 𝝇 𝟏 𝒒 𝒖 ′ ? ′ 𝒒 𝒖𝒕 →x ( n ch ) ≈TCM 𝒒 𝒖𝒊𝟏 =1.3 GeV/c 𝒄 𝒄 𝟏 𝟑 𝝉 𝝉 𝟏 = 13

  14. PYTHIA (and Other Monte Carlos) arXiv: 1706.02166 MPI = multiple parton interactions CR 𝒐 𝒅𝒊 ∝ 𝒐 𝑵𝑸𝑱 PLB 727, 371(2013) no jet spectrum cutoff 𝒒 𝟏 → 𝟑 GeV 𝒐 𝑵𝑸𝑱 (𝒄) depends on centrality eikonal model 𝒒 𝒖 (𝒐 𝒅𝒊 ) trend requires color reconnection (CR) 14

  15. PYTHIA (and Other Monte Carlos) arXiv: 1706.02166 MPI = multiple parton interactions CR (HC  3) 𝒐 𝒅𝒊 ∝ 𝒐 𝑵𝑸𝑱 PLB 727, 371(2013) eikonal no jet spectrum cutoff ′ 𝒒 𝒖𝒕 𝒒 𝟏 → 𝟑 GeV 𝒐 𝑵𝑸𝑱 (𝒄) depends on centrality eikonal model 𝒒 𝒖 (𝒐 𝒅𝒊 ) trend requires color reconnection (CR) those assumptions conflict with MB dijets and the p-p TCM see also HIJING, AMPT 15

  16. Conclusions • TCM provides accurate, comprehensive description • Soft component S(y t ) is universal: 𝝇 𝒕 ~ low- x gluons • Jets dominate 𝒒 𝒖𝒊 (𝒐 𝒕 , √s ) structure in all systems • Centrality not relevant for p-p collisions (noneikonal) • A-B systems evolve from isolated N-N to Glauber • Naïve Glauber model applied to p -A system fails • p-p TCM is opposite to PYTHIA basic assumptions • A- B “collectivity” is jet manifestations, not flows 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend