ntroduction
play

NTRODUCTION : : Su INT Sumit Ba Basu su Lu Lund Un University - PowerPoint PPT Presentation

NTRODUCTION : : Su INT Sumit Ba Basu su Lu Lund Un University ty, , Departm tment t of of Physics, , Divi Di vision of of Particle Physics, , Bo Box 118, 118, SE-221 221 00, 00, Lund, Sweden ema email: sumi umit.ba basu@


  1. NTRODUCTION : : Su INT Sumit Ba Basu su Lu Lund Un University ty, , Departm tment t of of Physics, , Divi Di vision of of Particle Physics, , Bo Box 118, 118, SE-221 221 00, 00, Lund, Sweden ema email: sumi umit.ba basu@ u@cer ern. n.ch h

  2. 1 I am from India • Ph.D (2016) ( VECC & • ALICE Expt. CERN) Post-Doctoral Fellow • (Wayne State University, USA) (Dec 2016 – Mar 2020) and Now, Post-Doctoral Fellow • (Lund University, Sweden) 2018 à Sumit V2.0

  3. Ph.D.: Temperature Fluctuations 2 Sources Temperature (T) ( L. Stodolsky, Phys. Rev. Lett. 75, 1044 (1995) ) 1. Initial State fluctuations Chemical Freeze-out 2. Thermodynamical fluctuations Kinetic 3. Statistical fluctuations Phy. Rev. C 94 034909 (2016) Chemical potential (μ) b 2 ∫ p T F ( p t ) dp T 8 STAR Au+Au 0-5% ⎛ ⎞ F ( p t ) ~ exp − p T p T = a STAR Cu+Cu 0-10% 7 ⎜ ⎟ b HRG ⎜ ⎟ ∫ p T F ( p t ) dp T eff HM ⎝ ⎠ 6 a T HM via QGM 〉 N QGM 5 C AMPT 〈 c v = C n = C = 4 Sp. Heat dN/dp T VT 3 v c 3 2 70 ----- 3 SB limit = N ∆ = VT ∆ 〈 〉 T , T , µ µ 60 ch ch B B 1 Lattice prediction T , µ = 0 T , µ = 0 a b kin kin B B 50 p T 0 2 3 40 10 10 10 C ∆ = S (GeV) v 30 c NN 20 10 0 2 3 10 10 1 10 S (GeV) NN

  4. Ph.D.: Multiplicity Fluctuations 3 ω ch = h N 2 ch i � h N ch i 2 = σ 2 h N ch i µ where, N is the charged particle multiplicity k T expressed in fm 3 GeV -1 Phys. Lett. B784 (2018) 1-5 k T = − 1 # ∂ V & % ( V $ ∂ P ' T $ % ) + ,- ) ! " = ! * " = < ' > % < ' > ! * "

  5. Two-particle transverse momentum correlations 4 Sean Gavin et. Al PRL 97 162302 (2006) PRC 94 024921 (2016)

  6. Sean Gavin et. Al 5 Two-particle transverse momentum correlations PRL 97 162302 (2006) PRC 94 024921 (2016) PLB Phys Lett. B, Volume 804 (2020) 135375 Ongoing further developments: Extend this study for pp and pPb and study the variation of G2 observable with dNch/dη Promising results, soon will be reported from ALICE, about System size dependence of G2 (Momentum Correlator)

  7. 6 General D Ge Defi finiti tion o of B f Balance F Functi tions d σ C 2 ( x 1 , x 2 ) = ρ 2 ( x 1 , x 2 ) − ρ 1 ( x 1 ) ρ 1 ( x 2 ) ρ ( x ) = 1 Cumulant x ≡ { y , ϕ , p T } σ dx R 2 is a robust observable! C 2 ( x 1 , x 2 ) Single track efficiencies R 2 ( x 1 , x 2 ) = Normalized Cumulant ρ 1 ( x 1 ) ρ 1 ( x 2 ) cancel out of the ratio LS = 1 { } 2 ( ++ ) + ( −− ) 4 different charge combinations for R 2 : US = 1 { } (+ -), (- +), (+ +), and (- -) 2 ( + − ) + ( − + ) CI = 1 { } 2 LS + US Charge Independent (CI) combinations For Charged particle, Signs (+) & (-) represents charge. CD = 1 { } Charge Dependent (CD) combinations 2 US − LS For Λ’s being neutral particle, we define (+) for baryon number & (-) for antibaryon number. R 2CD is proportional to the Balance Function Similary, LS means same-type Baryonic CD = dN ch + − − R 2 ++ + R 2 − + − R 2 B ( Δ x ) ≈ dN ch 1 ⎡ ⎤ −− dx R 2 2 R 2 number and US means opposite-type ⎣ ⎦ dx Baryonic number

  8. Im Import rtance of Studying Balance Functions 7 Conservation of quantum numbers. -> for each positive general charge, a negative balancing charge produced at approx. the same space-time. The width of the BF was initially proposed to be related to the time of hadronization. Understand / Probe 1. Two-wave quark production model: π ± p( 𝒒 ) : predominantly produced at late stage K ± : predominantly produced at early stage 2. Collision dynamics, e.g., radial flow 3. Hadro-chemistry – Charge / Strangeness / Baryon / Resonance production Pratt PRL. 108, 212301 (2012) # of quarks Bass, Danielewicz, Pratt PRL 85 2689 (2000)

  9. Tw Two-pa particl cle N Num umbe ber (Δ η ,Δ φ ) Co Correlations 8

  10. Mo Motiva vation: 9 h ✓ h Q

  11. Mo Motiva vation: π K p Balance Functions 10 h π k p ✓ h Q Q π ? ? ? k Q S ? ? ? P ? ? ? Q B # of quarks Run I : Pb+Pb @ 2760 GeV

  12. Strange Meson Non-Strange Baryon Non-Strange Meson Charged Hadrons = 11 = Kaon (K ± ) = Proton (p( ̅ 𝑞 )) = Pion (π ± ) Strange( )+ Non-Strange( ) Centrality ALICE Pb-Pb ALICE Pb-Pb s s = 2.76 TeV = 2.76 TeV ALICE Pb-Pb ALICE Pb-Pb s s = 2.76 TeV = 2.76 TeV ALICE Pb-Pb ALICE Pb-Pb s s = 2.76 TeV = 2.76 TeV NN NN NN NN NN NN p ± p ± £ £ ± £ £ 0.2< p <2 GeV/ c 0-5% 0.2 p 2 GeV/ c K 0-10% 0.5 p 2.5 GeV/ c p p 0-20% T T T 0.15 0.06 0.4 ) -1 ) (rad ) ) j 0.3 0.1 0.04 j D D y, j y, 1. What about 𝝡 0.2 D D D 0.02 0.05 B( y, B( 0.1 D Strange Baryon ?? B( 0 0 0 - - - 1 1 1 - 0.5 0 0 0 D D D 4 4 0.5 4 y 1 2 y y 2 2 1 0 2. Strange Baryons: 0 1 0 (rad) D j j (rad) d ) D D j ( r a Lambda ALICE Pb-Pb ALICE Pb-Pb s s = 2.76 TeV = 2.76 TeV ALICE Pb-Pb ALICE Pb-Pb s s = 2.76 TeV = 2.76 TeV ALICE Pb-Pb ALICE Pb-Pb s s = 2.76 TeV = 2.76 TeV NN NN NN NN Cascade NN NN p ± p ± ± 0.2< p <2 GeV/ c 30-40% £ £ £ £ 0.2 p 2 GeV/ c K 30-40% 0.5 p 2.5 GeV/ c p p 20-40% T T T 0.15 0.06 Omega 0.15 ) -1 ) (rad ) ) j 0.1 0.04 j D 0.1 D y, y, j D D D 0.02 0.05 B( y, B( 0.05 3. Strangeness- D B( 0 0 0 Dependent Net - - - 1 1 1 - 0.5 0 0 0 D D 4 D Baryon? y 1 4 0.5 4 2 y y 1 2 2 0 1 0 0 j (rad) D (rad) ) D j D j r a d ( ALICE Pb-Pb ALICE Pb-Pb s s = 2.76 TeV = 2.76 TeV ALICE Pb-Pb ALICE Pb-Pb s s = 2.76 TeV = 2.76 TeV ALICE Pb-Pb ALICE Pb-Pb s s = 2.76 TeV = 2.76 TeV NN NN NN NN NN NN p ± p ± 0.2< p <2 GeV/ c 70-90% ± £ £ £ £ 0.2 p 2 GeV/ c K 60-90% 0.5 p 2.5 GeV/ c p p 40-80% T T T 0.15 0.06 0.06 ) -1 ) (rad ) j ) 0.04 0.1 j D 0.04 D y, j y, D D D 0.02 B( 0.05 y, B( 0.02 D B( 0 0 0 - - 1 - 1 1 - 0.5 0 0 0 D 4 D D y 1 2 4 0.5 4 y y 0 2 2 1 1 0 0 j (rad) D j (rad) j a d ) D D ( r Increasing Mass ( MeV) 139 496 938

  13. B(Δy) Projections & Widths 12 π ± K ± p(p) π ± K ± p(p) 0.02 - - - this thesis 0 5 % 0 10 % 0 20 % p this thesis - p - - 0 5 % 0 10 % p 0 20 % p K p p K 0.6 - - - Pb-Pb s = 2.76 TeV 0.1 - - - 30 40 % 30 40 % 20 40 % Pb-Pb s = 2.76 TeV 30 40 % 30 40 % 20 40 % NN 0.02 NN p p p p - - - - - - 70 90 % 60 90 % 40 80 % 70 90 % 60 90 % 40 80 % 0.4 π ± 0.4 0.05 0.01 0.05 0.01 0.2 0.2 0 0 0 0 0 0 - - - 0 2 4 0 2 4 0 2 4 1 0 1 1 0 1 1 0 1 - - - 0 10 % 0 10 % 0 20 % p - - - p 0 10 % 0 10 % Kp 0 20 % K Kp KK K KK 0.4 0.03 0.6 - - - 30 40 % 30 40 % 20 40 % - - - 30 40 % 30 40 % 20 40 % 0.4 0.15 - - - - - - 60 90 % 60 90 % 40 80 % ) 60 90 % 60 90 % 40 80 % -1 0.04 0.3 ) (rad y) 0.02 0.4 0.1 K ± D 0.2 B ( 0.2 j 0.02 D 0.01 0.2 0.05 B( 0.1 0 0 0 0 0 0 - - - 1 0 1 1 0 1 1 0 1 0 2 4 0 2 4 0 2 4 - - - 0 20 % 0 20 % 0 20 % p p - - - p p 0 20 % pK 0 20 % 0 20 % pK pp pp 0.4 - - - 0.15 0.15 0.1 0.1 20 40 % 20 40 % 20 40 % - - - 20 40 % 20 40 % 20 40 % 0.3 - - - - - - 40 80 % 40 80 % 40 80 % 40 80 % 40 80 % 40 80 % 0.3 0.1 0.1 0.2 0.2 0.05 0.05 p(p) 0.1 0.05 0.05 0.1 0 0 0 0 0 0 - - - 1 0 1 1 0 1 1 0 1 0 2 4 0 2 4 0 2 4 D D j y Δɸ (rad) (rad) Δy

  14. BF Widths and Integrals 13 0.2 < p T ( π ± , K ± ) < 2.0 GeV/ c ALICE Pb-Pb s = 2.76 TeV 1 NN 0.5 < p T ( p(p) ) < 2.5 GeV/ c ± p ± - p ± - p ± - p ± K p( p ) ± ± ± ± p ± - - - K K K p( p ) K ± p ± - - - p( p ) K p( p ) p( p ) p( p ) 0.8 y D s 0.6 STAR PRC 82, 024905 (2010) 0.4 0 20 40 60 80 Au-Au @ 200 GeV 1.5 0.2 < p T < 0.6 GeV/ c j D s 1 ALICE, PRC 88, 044910 (2013) 0 20 40 60 80 0.6 0.4 B Y 0.2 0 0 20 40 60 80 Centrality (%)

  15. Mo Motiva vation: 14 h π k p Λ ✓ h Q ✓ ✓ ✓ Q π ✓ ✓ ✓ k Q S ✓ ✓ ✓ P Q B B S Λ Work in Progress Run II : Pb+Pb @ 5020 GeV Run I : Pb+Pb @ 2760 GeV

  16. Re Resu sults: s: R2 R2 15 0-10% Same Opposite Baryon/Strange Baryon/Strange ΛΛ + $ Λ $ Λ$ Λ Λ 30-40% C 2 ( x 1 , x 2 ) R 2 ( x 1 , x 2 ) = ρ 1 ( x 1 ) ρ 1 ( x 2 ) Ref: Eur.Phys.J. C77 (2017) 569 p+p @ √s =7 TeV 60-80%

  17. Re Resu sults: s: B 16 Two Wave quark Production??? Radial Flow effect???

  18. At At Lu Lund: Λ# 1. Make a multiplicity dependent RT & SO analysis for analysis Λ and make a connection Between Balance Function & Per Trigger Yield analysis 2. Extend Jonatan’s study of 𝚶 𝚶 correlation to Ω Ω Correlation 3. Grid MC: for Rope Tune CD based CR 4. Pythia ANTAGYR Study and Make a comparison with QCD- QGP(EPOS) approach to regular PYTHIA MPI model(Lund string model), Strange (Rope Hadronization framework/ Flavour Ropes ) and Flow(Rope Hadronization framework/ String shoving) 5. … Thank You

  19. Back-up Slides

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend