nrp symposium
play

NRP SYMPOSIUM PRESENTATION SPMS04 Li Jiang Rong River Valley High - PowerPoint PPT Presentation

NRP SYMPOSIUM PRESENTATION SPMS04 Li Jiang Rong River Valley High School Spin Orbit Torque-Based Synaptic Devices in an Artificial Neural Network 2 1. RATIONALE Significance of Project SMALLER devices with HIGHER data density


  1. NRP SYMPOSIUM PRESENTATION SPMS04 Li Jiang Rong River Valley High School

  2. Spin Orbit Torque-Based Synaptic Devices in an Artificial Neural Network 2

  3. 1. RATIONALE Significance of Project

  4. SMALLER devices with HIGHER data density Conventional Spintronics Electronics 8-Bit Data VS 1 1 1 1 1 1 1 1 00000000 4

  5. INCREASING power consumption Transistors Power 5

  6. 2. AIMS Objectives of Project 6

  7. Device Size Dependence Device Size No. of Resistance States (100 nm – 800 nm) 7

  8. Hopfield Network Character Recognition Simulation of SOT devices 8

  9. 3. METHODOLOGY Experimental Procedures (Device Size Dependence) 9

  10. 1 2 SOT Devices (Device Size Dependence) 10

  11. 1 Magnetron Electron Beam Ion Milling Sputtering Lithography (Device Size Dependence) 11

  12. 1 Ta [ [ [Co/Pt] 4 Ta [ [ Si/SiO 2 Substrate Magnetron Electron Beam Ion Milling Sputtering Lithography (Device Size Dependence) 12

  13. 1 Electron Beam Exposure Positive Resist Substrate Substrate Substrate Negative Resist Substrate Substrate Substrate Magnetron Electron Beam Ion Milling Sputtering Lithography (Device Size Dependence) 13

  14. 1 Removing material to a desired depth (17.2 nm) Substrate Magnetron Electron Beam Ion Milling Sputtering Lithography (Device Size Dependence) 14

  15. 2 Computer Arduino with to control LabVIEW motor programme Field-Induced & Electromagnets Current-Induced Sample Keithley 2400 source meter to Motor with 1.8 ° send I write pulses rotation step size (Device Size Dependence) 15

  16. 2 Field-Induced & Current-Induced (Device Size Dependence) 16

  17. 4. RESULTS ANALYSIS Discussion of Project (Device Size Dependence) 17

  18. Field-Induced c) d) a) b) 7  (  ( o ) o )  ( o )  )  ( 8 7 9 93.6 93.6 6 93.6 93.6 91.8 91.8 7 6 91.8 91.8 8 90.0 90.0 5 88.2 90.0 6 88.2 88.2 5 86.4 88.2 4 86.4 86.4 7 84.6 86.4 5 4 3 6 R H (  ) R H (  ) R H (  ) R H (  ) 4 3 2 5 3 2 1 2 1 4 0 1 0 3 -1 0 -1 -2 2 -8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8 e) g) H (kOe) f) H (kOe) H (kOe) h) H (kOe) 9 7 9 (  )  (  )  )  (  )  ( 9 8 93.6 93.6 8 93.6 93.6 6 8 91.8 91.8 91.8 91.8 7 7 90.0 90.0 90.0 5 90.0 7 88.2 88.2 88.2 88.2 6 6 86.4 4 86.4 86.4 6 86.4 5 5 5 3 R H (  ) R H (  ) R H (  ) R H (  ) 4 4 4 2 3 3 3 1 2 2 2 0 1 1 1 -1 0 0 0 -8 -6 -4 -2 0 2 4 6 8 -10 -8 -6 -4 -2 0 2 4 6 8 10 -8 -6 -4 -2 0 2 4 6 8 -8 -6 -4 -2 0 2 4 6 8 H (kOe) H (kOe) H (kOe) H (kOe) (Device Size Dependence) 18

  19. Current-Induced 1.4 a) c) b) d) 0.8 0.6 -2.4 1.2 0.6 0.4 -2.6 1.0 0.4 0.2 -2.8 0.8 0.2 R H (  ) R H (  ) R H (  ) R H (  ) 0.0 0.0 0.6 -3.0 -0.2 0.4 -0.2 -3.2 -0.4 0.2 -0.4 -3.4 -0.6 0.0 -0.6 -3.6 -0.8 -0.2 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 7 A/cm 2 ) 7 A/cm 2 ) 7 A/cm 2 ) 7 A/cm 2 ) J (10 J (10 J (10 J (10 1.0 1.6 g) f) h) e) 0.8 1.4 0.8 1.4 0.6 1.2 0.6 1.2 0.4 1.0 0.4 1.0 0.2 0.8 0.2 0.8 R H (  ) R H (  ) R H (  ) R H (  ) 0.0 0.0 0.6 0.6 -0.2 -0.2 0.4 0.4 -0.4 -0.4 0.2 0.2 -0.6 -0.6 0.0 0.0 -0.8 -0.8 -0.2 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 7 A/cm 2 ) 7 A/cm 2 ) 7 A/cm 2 ) 7 A/cm 2 ) J (10 J (10 J (10 J (10 (Device Size Dependence) 19

  20. 3. METHODOLOGY Experimental Procedures (Hopfield Network) 20

  21. 1 450 400 350 Number of Synapses 300 250 200 150 100 50 0 0 5 10 15 20 25 30 Number of Neurons 300 synapses needed in a 5x5 block pattern (Hopfield Network) 21

  22. 2 SOT devices as synaptic weights (Hopfield Network) 22

  23. 3 2 12 10 8 6 1 4 2  (a.u.) R H (  ) 0 -2 0 -4 -6 -8 -10 -1 -12 -15 -10 -5 0 5 10 15 7 A/cm 2 ) J (10 SOT devices as synaptic weights (Hopfield Network) 23

  24. 4. RESULTS ANALYSIS Discussion of Project (Hopfield Network) 24

  25. Hopfield Network 3 Character recognition of letters ‘R’, ‘V’, ‘H’ and ‘S’ (Hopfield Network) 25

  26. Hopfield Network 3 Character recognition of letters ‘R’, ‘V’, ‘H’ and ‘S’ (Hopfield Network) 26

  27. 5. CONCLUSION Future Implications of Project 27

  28. Engineer devices with specific switching characteristics • Work towards energy-efficient brain-inspired computing • 28

  29. References 1. Kurenkov, C. Zhang, S. DuttaGupta, S. Fukami, H. Ohno. (March, 2017). Device-size dependence of field-free spin-orbit torque induced magnetization switching in antiferromagnet/ferromagnet structures. Applied Physics Letters, 110, 092410. 2. William A. Borders, Hisanao Akima et al. (December, 2016). Analogue spin-orbit torque device for artificial-neural-network-based associative memory operation.Applied Physics Express 10, 013007. 29

  30. THANK YOU! 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend