nonlinear least squares problems with the gauss newton
play

Nonlinear Least-Squares Problems with the Gauss-Newton and - PowerPoint PPT Presentation

Nonlinear Least-Squares Problems with the Gauss-Newton and Levenberg-Marquardt Methods Alfonso Croeze 1 Lindsey Pittman 2 Winnie Reynolds 1 1 Department of Mathematics Louisiana State University Baton Rouge, LA 2 Department of Mathematics


  1. Nonlinear Least-Squares Problems with the Gauss-Newton and Levenberg-Marquardt Methods Alfonso Croeze 1 Lindsey Pittman 2 Winnie Reynolds 1 1 Department of Mathematics Louisiana State University Baton Rouge, LA 2 Department of Mathematics University of Mississippi Oxford, MS July 6, 2012 Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  2. Optimization The process of finding the minimum or maximum value of an objective function (e.g. maximizing profit, minimizing cost). Constrained or unconstrained. Useful in nonlinear least-squares problems. Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  3. Terminology I The gradient ∇ f of a multivariable function is a vector consisting of the function’s partial derivatives: � ∂ f � , ∂ f ∇ f ( x 1 , x 2 ) = ∂ x 1 ∂ x 2 The Hessian matrix H ( f ) of a function f ( x ) is the square matrix of second-order partial derivatives of f ( x ):   ∂ f ∂ f ∂ x 2 ∂ x 1 ∂ x 2   1 H ( f ( x 1 , x 2 )) =    ∂ f ∂ f    ∂ x 2 ∂ x 1 ∂ x 2 2 Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  4. Terminology II The transpose A ⊤ of a matrix A is the matrix created by reflecting A over its main diagonal:   x 1 � ⊤ = � x 1 x 2 x 3 x 2   x 3 Matrix A is positive-definite if, for all real non-zero vectors z , z ⊤ Az > 0. Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  5. Newton’s Method = x n − f ′ ( x n ) x n +1 = x n − f ( x n ) � � f ′ ( x n ) f ′′ ( x n ) Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  6. Nonlinear Least-Squares I A form of regression where the objective function is the sum of squares of nonlinear functions: m f ( x ) = 1 ( r j ( x )) 2 = 1 � 2 || r ( x ) || 2 2 2 j =1 The j -th component of the m -vector r ( x ) is the residual r j ( x ) = φ ( x ; t j ) − y j : r ( x ) = ( r 1 ( x ) , r 2 ( x ) , ..., r m ( x )) T Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  7. Nonlinear Least-Squares II The Jacobian J ( x ) is a matrix of all ∇ r j ( x ):  ∇ r 1 ( x ) T  � ∂ r j ∇ r 2 ( x ) T �   J ( x ) = =  .  . ∂ x i   . j =1 ,..., m ; i =1 ,..., n   ∇ r m ( x ) T Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  8. Nonlinear Least-Squares III The gradient and Hessian of f ( x ) can be expressed in terms of the Jacobian: m � r j ( x ) ∇ r j ( x ) = J ( x ) T r ( x ) ∇ f ( x ) = j =1 m m ∇ r j ( x ) ∇ r j ( x ) T + ∇ 2 f ( x ) � � r j ( x ) ∇ 2 r j ( x ) = j =1 j =1 m � r j ( x ) ∇ 2 r j ( x ) J ( x ) T J ( x ) + = j =1 Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  9. The Gauss-Newton Method I Generalizes Newton’s method for multiple dimensions Uses a line search: x k +1 = x k + α k p k The values being altered are the variables of the model φ ( x ; t j ) Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  10. The Gauss-Newton Method II Replace f ′ ( x ) with the gradient ∇ f Replace f ′′ ( x ) with the Hessian ∇ 2 f Use the approximation ∇ 2 f k ≈ J T k J k J T k J k p GN = − J T k r k k J k must have full rank Requires accurate initial guess Fast convergence close to solution Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  11. The Gauss-Newton Method III Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  12. The Gauss-Newton Method IV Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  13. GN Example: Exponential Data I United States population (in millions) and the corresponding year: Year Population 1815 8 . 3 1825 11 . 0 1835 14 . 7 1845 19 . 7 1855 26 . 7 1865 35 . 2 1875 44 . 4 1885 55 . 9 Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  14. GN Example: Exponential Data II 50 40 30 20 10 2 3 4 5 6 7 8 Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  15. GN Example: Exponential Data III 50 40 30 20 10 2 3 4 5 6 7 8 φ ( x ; t ) = x 1 e x 2 t ; x 1 = 6 , x 2 = . 3 Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  16. GN Example: Exponential Data IV 6 e . 3(1) − 8 . 3    − 0 . 200847  6 e . 3(2) − 11 − 0 . 0672872      6 e . 3(3) − 14 . 7    0 . 0576187      6 e . 3(4) − 19 . 7    0 . 220702     r ( x ) = =   6 e . 3(5) − 26 . 7   0 . 190134       6 e . 3(6) − 35 . 2   1 . 09788       6 e . 3(7) − 44 . 4     4 . 59702     6 e . 3(8) − 55 . 9 10 . 2391 || r || 2 = 127 . 309 Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  17. GN Example: Exponential Data V φ ( x ; t ) = x 1 e x 2 t e x 2 e x 2 x 1    1 . 34986 8 . 09915  e 2 x 2 2 e 2 x 2 x 1 1 . 82212 21 . 8654     e 3 x 2 3 e 3 x 2 x 1     2 . 4596 44 . 2729      e 4 x 2 4 e 4 x 2 x 1    3 . 32012 79 . 6828     J ( x ) = =  e 5 x 2 5 e 5 x 2 x 1    4 . 48169 134 . 451         e 6 x 2 6 e 6 x 2 x 1 6 . 04965 217 . 787         e 7 x 2 7 e 7 x 2 x 1 8 . 16617 342 . 979     e 8 x 2 8 e 8 x 2 x 1 11 . 0232 529 . 112 Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  18. GN Example: Exponential Data VI Solve [ { J 1 T . J 1 . {{ p 1 } , { p 2 }} == − J 1 T . R 1 } , { p 1 , p 2 } ] {{ p 1 → 0 . 923529 , p 2 → − 0 . 0368979 }} x 1 1 = 6 + 0 . 923529 = 6 . 92353 x 2 1 = . 3 − 0 . 0368979 = 0 . 263103 Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  19. GN Example: Exponential Data VII 50 40 30 20 10 2 3 4 5 6 7 8 || r || 2 = 6 . 16959 Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  20. GN Example: Exponential Data VIII 50 40 30 20 10 2 3 4 5 6 7 8 || r || 2 = 6 . 01313 Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  21. GN Example: Exponential Data IX 50 40 30 20 10 2 3 4 5 6 7 8 || r || 2 = 6 . 01308; x = (7 . 00009 , 0 . 262078) Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  22. GN Example: Sinusoidal Data I Average monthly high temperatures for Baton Rouge, LA: Jan 61 Jul 92 Feb 65 Aug 92 Mar 72 Sep 88 Apr 78 Oct 81 May 85 Nov 72 Jun 90 Dec 63 Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  23. GN Example: Sinusoidal Data II 90 85 80 75 70 65 2 4 6 8 10 12 Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  24. GN Example: Sinusoidal Data III 90 85 80 75 70 65 60 2 4 6 8 10 12 φ ( x ; t ) = x 1 sin( x 2 t + x 3 ) + x 4 ; x = (17 , . 5 , 10 . 5 , 77) Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

  25. GN Example: Sinusoidal Data IV     17 sin( . 5(1) + 10 . 5) + 77 − 61 − 0 . 999834 17 sin( . 5(2) + 10 . 5) + 77 − 65 − 2 . 88269         17 sin( . 5(3) + 10 . 5) + 77 − 72 − 4 . 12174         17 sin( . 5(4) + 10 . 5) + 77 − 78 − 2 . 12747         17 sin( . 5(5) + 10 . 5) + 77 − 85 − 0 . 85716         17 sin( . 5(6) + 10 . 5) + 77 − 90 0 . 664335     r ( x ) = =     17 sin( . 5(7) + 10 . 5) + 77 − 92 1 . 84033         17 sin( . 5(8) + 10 . 5) + 77 − 92 0 . 893216         17 sin( . 5(9) + 10 . 5) + 77 − 88 0 . 0548933          17 sin( . 5(10) + 10 . 5) + 77 − 81   − 0 . 490053       17 sin( . 5(11) + 10 . 5) + 77 − 72   0 . 105644      17 sin( . 5(12) + 10 . 5) + 77 − 63 1 . 89965 || r || 2 = 40 . 0481 Croeze, Pittman, Reynolds LSU&UoM The Gauss-Newton and Levenberg-Marquardt Methods

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend