nonlinear gibbs measure and equilibrium bose gases
play

Nonlinear Gibbs measure and equilibrium Bose gases Phan Th` anh Nam - PowerPoint PPT Presentation

Nonlinear Gibbs measure and equilibrium Bose gases Phan Th` anh Nam (LMU Munich) Joint work with Mathieu Lewin and Nicolas Rougerie ICMP Montreal, July 27, 2018 1 / 10 Goal Nonlinear Gibbs measure d ( u ) = z


  1. Nonlinear Gibbs measure and equilibrium Bose gases Phan Th` anh Nam (LMU Munich) Joint work with Mathieu Lewin and Nicolas Rougerie ICMP Montreal, July 27, 2018 1 / 10

  2. Goal Nonlinear Gibbs measure � �� �� d µ ( u ) = “ z − 1 exp |∇ u | 2 + κ | u | 2 + | u | 2 ( w ∗ | u | 2 ) − β du ” Ω invariant under NLS flow u = ( − ∆ + κ ) u + ( w ∗ | u | 2 ) u i ˙ used in Euclidean Quantum Field Theory (Glimm-Jaffe, Simon ’70s, ...) NLS equation with rough initial data (Lebowitz-Rose-Speer ’88, Bourgain ’90s, Burq-Thomann-Tzvetkov ’00s, ...) Stochastic PDE (da Prato-Debbussche ’03, Hairer ’14, ...) Goal: µ arised from many-body quantum mechanics, in a mean-field limit Difficulty: µ is singular, energy functional is + ∞ almost everywhere 2 / 10

  3. Gibbs measure Free (Gaussian) measuse h = − ∆ + κ > 0 on bounded domain Ω ⊂ R d , hu j = λ j u j . Then � λ j � � π e − λ j | α j | 2 d α j d µ 0 ( u ) = “ z − 1 0 e −� u , hu � du ” := , α j = � u j , u � ∈ C j ≥ 1 is well defined on Sobolev space H s if and only if s < 1 − d / 2 Interacting measure d µ ( u ) = “ z − 1 e −� u , hu �−D ( u ) du ” := z − 1 e −D ( u ) d µ 0 ( u ) r is well-defined when d = 1, 0 ≤ w ∈ a δ 0 + L ∞ and �� D ( u ) = 1 w ( x − y ) | u ( x ) | 2 | u ( y ) | 2 dxdy 2 w ∈ L 1 and d = 2 , 3, 0 ≤ � �� � �� � D ( u ) = 1 | u ( x ) | 2 − �| u ( x ) | 2 � µ 0 | u ( y ) | 2 − �| u ( y ) | 2 � µ 0 w ( x − y ) 2 3 / 10 1

  4. Many-body quantum model Bosonic Gibbs state Γ λ, T = Z − 1 λ, T e − H λ / T with grand-canonical Hamiltonian   ∞ n ∞ � � � �   L 2 sym (Ω n ) H λ = ( − ∆ x j + κ ) + λ w ( x i − x j ) on n =0 j =1 1 ≤ i < j ≤ n n =0 � �� x ( − ∆ + κ ) a x dx + λ a ∗ w ( x − y ) a ∗ x a ∗ = y a x a y dxdy 2 Mean-field limit λ = T − 1 → 0 formally leads to semiclassical approximation � � �� � − 1 1 a ∗ w ( x − y ) a ∗ x a ∗ Z T − 1 , T = Tr exp x ( − ∆ + κ ) a x dx − y a x a y dxdy 2 T 2 T � ( T /π ) dim L 2 (Ω) w ( x − y ) | u ( x ) | 2 | u ( y ) | 2 dxdy du � u ( x )( − ∆+ κ ) u ( x ) dx − 1 �� e − ∼ 2 L 2 (Ω) 4 / 10

  5. 1D result � � �� � − 1 x ( − ∆ + κ ) a x dx − λ Γ λ, T = Z − 1 a ∗ w ( x − y ) a ∗ x a ∗ λ, T exp y a x a y dxdy T 2 T Theorem (Lewin-N-Rougerie ’15) Assume d = 1, 0 ≤ w ∈ a δ 0 + L ∞ and λ = T − 1 → 0. Then � Z λ, T e −D ( u ) d µ 0 ( u ) → z r = Z 0 , T L 2 (Ω) and � k ! T k Γ ( k ) | u ⊗ k �� u ⊗ k | d µ ( u ) , λ, T → ∀ k ≥ 1 L 2 (Ω) strongly in trace class Remarks Reduced density matrices Γ ( k ) λ, T ( x 1 , ..., x k ; y 1 , ..., y k ) = Tr[ a ∗ x 1 ... a ∗ x k a y 1 ... a y k Γ λ, T ] Fragmentation of Bose-Einstein condensates µ determined completely by all moments 5 / 10

  6. Renormalized Hamiltonian d ≥ 2 �� � �� � D ( u ) = 1 | u ( x ) | 2 − �| u ( x ) | 2 � µ 0 | u ( y ) | 2 − �| u ( y ) | 2 � µ 0 w ( x − y ) 2 � � � � � � � 2 � � = 1 � � | u ( x ) | 2 e ik · x dx − | u ( x ) | 2 e ik · x dx w ( k ) � dk � � 2 µ 0 Ω Ω � � � � x ( − ∆ + κ ) a x dx + λ � 2 dk a ∗ � d Γ( e ik · x ) − � d Γ( e ik · x ) � Γ 0 , T � H λ = w ( k ) � 2 � �� x ( − ∆ + V T ( x )) a x dx + λ y a x a y dxdy + λ a ∗ w ( x − y ) a ∗ x a ∗ = 2 � ρ 0 , T , w ∗ ρ 0 , T � 2 � � 1 with V T ( x ) = κ + λ w (0) / 2 − λ w ∗ ρ 0 , T ( x ) , ρ 0 , T ( x ) = ( x ; x ) − ∆+ κ e − 1 T In homogeneous case ( − ∆ periodic on unit torus)   T in d = 1  � 1 ρ 0 , T ( x ) = ∼ T log T in d = 2 | k | 2+ κ   − 1 e T T 3 / 2 k ∈ (2 π Z ) d in d = 3 and V T is simply a (modified) chemical potential 6 / 10

  7. 2D result � � � �� a ∗ x ( − ∆ + V T ( x )) a x dx + λ w ( x − y ) a ∗ x a ∗ y a x a y dxdy + E T Γ λ, T = Z − 1 2 λ, T exp − T Theorem (Lewin-N-Rougerie ’18) w ( k )(1 + | k | ) ∈ L 1 and λ = T − 1 → 0. Then Assume d = 2, 0 ≤ � � Z λ, T e −D ( u ) d µ 0 ( u ) → z r = Z 0 , T and � k ! T k Γ ( k ) | u ⊗ k �� u ⊗ k | d µ ( u ) , λ, T → ∀ k ≥ 1 strongly in Schatten space S p for all p > 1. Moreover, � Γ (1) λ, T − Γ (1) 0 , T | u ⊗ k �� u ⊗ k | ( d µ ( u ) − d µ 0 ( u )) → in trace class T Similar result expected in d = 3 (work in progress) 7 / 10

  8. Remarks Fr¨ ohlich-Knowles-Schlein-Sohinger 2017: µ arised in d ≤ 3 for e − ε H 0 / T e − ( H λ − 2 ε H 0 ) / T e − ε H 0 / T Rescaling T �→ 1 and Ω �→ [0 , L ] d with L → ∞ : free density � � 1 1 + ∞ in d = 1 , 2 � → ρ c = 1 k 2+ κ L d e | 2 π k | 2 − 1 dk in d = 3 e − 1 L 2 R 3 k ∈ 2 π Z d Thus the Gibbs measure tells us the behavior just below the critical density , or equivalently just above the critical temperature for BEC Deuchert-Seiringer-Yngvason 2018: BEC transition in thermodynamic and Gross-Pitaevskii limit 8 / 10

  9. Ideas of proofs Variational approach : � � − log Z λ, T + λ Γ λ, T minimizes = inf H (Γ , Γ 0 , T ) T Tr( W Γ) � �� � Z 0 , T Γ ≥ 0 , Tr Γ=1 Tr(Γ(log Γ − log Γ 0 , T )) � � � µ minimizes − log z r = inf H cl ( ν, µ 0 ) + D ( u ) d ν ( u ) � �� � ν prob. measure d ν d ν � d µ 0 log d µ 0 d µ 0 Quantum to classical by quantum de Finetti theorem � k ! T k Γ ( k ) | u ⊗ k �� u ⊗ k | d ν ( u ) , λ, T ⇀ ∀ k ≥ 1 In d = 1 the result essentially follows from lim inf H (Γ λ, T , Γ 0 , T ) ≥ H cl ( ν, µ 0 ) (Berezin-Lieb) � lim inf λ T Tr( W Γ λ, T ) = lim inf 1 T 2 Tr( w Γ (2) λ, T ) ≥ D ( u ) d ν ( u ) (Fatou) 9 / 10

  10. Ideas of proofs For d ≥ 2, renormalized interaction has no sign � Fatou’s lemma fails to apply! Localization method Γ λ, T ≈ (Γ λ, T ) P ⊗ (Γ 0 , T ) Q , P = 1 ( − ∆ + κ ≤ Λ) , Q = 1 − P Use quantitative de Finetti for P modes, and error estimate for Q modes Lemma (Variance estimate: d = 2 , Λ ≥ T δ ) �� � 2 � 1 d Γ( Q ) − � d Γ( Q ) � Γ λ, T → 0 T 2 Γ λ, T Proof. Reduce two-body to one-body problem � � H λ − ε d Γ( Q ) d Γ( Q ) e − �� � 2 � Tr T � � d Γ( Q ) − � d Γ( Q ) � λ, T ≈ T ∂ ε =0 , H λ − ε d Γ( Q ) Γ λ, T e − Tr T then control g ′ (0) by g ( ε ) − g (0) and g ′′ , thanks to Taylor’s expansion g ( ε ) = g (0) + g ′ (0) ε + ε 2 2 g ′′ ( θ ε ) 10 / 10

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend