nonequilibrium dynamics of superconductors ryo shimano
play

Nonequilibrium dynamics of superconductors Ryo Shimano Cryogenic - PowerPoint PPT Presentation

Nonequilibrium dynamics of superconductors Ryo Shimano Cryogenic Research Center and Department of Physics University of Tokyo Outline (1) Introduction (2) Photoexcitation in s-wave superconductor (3) Higgs mode in a s-wave superconductor NbN


  1. Nonequilibrium dynamics of superconductors Ryo Shimano Cryogenic Research Center and Department of Physics University of Tokyo

  2. Outline (1) Introduction (2) Photoexcitation in s-wave superconductor (3) Higgs mode in a s-wave superconductor NbN (4) Higgs mode in d-wave cuprate superconductors (5) Photoinduced metastable phase

  3. Concept of Photoinduced Phase Transition Yutaka Toyozawa, J. Phys. Soc. Jpn. 50 , 1861(1981) Keiichiro Nasu, Rep. Prog. Phys. 67 , 1607(2004)

  4. Dynamical localization N. Tsuji, T, Oka, P. Werner, and H . Aoki Phys. Rev. Lett 106 , 236401(2011) Interaction Quench T. Ishikawa et al., Nat. Commun. 5 , 5528(2014)

  5. Photocreation of Berry phase # realized in cold atoms: “Experimental realization of the toplological Haldane model with ultracold Fermions”, G. Jotzu et al., Nature 515 , 237 (2014)

  6. Towards artificial light-control of quantum material Nonequilibrium light THz orbital Superconductor charge lattice collective modes(Higgs, N-G) competing order, hidden phase pairing symmetry ( p,d,.. ) spin Floquet Engineering light-induced superconductivity control of topological number photocontrol higher order harmonics generation Ultrafast control of multiferroics electromagnon, skirmion Light-control of ferroelectricity Light-control of magnetism

  7. Advanced Light Source/Probe Time resolved spectroscopy ARPES XRD Electron Diffraction Terahertz + Advanced light source Intense THz pulse mid-IR fs~as optical pulse

  8. Elementary excitations in condensed matter systems 1THz=4meV=300 m m=33cm -1 ~50K Microwave ・・・ Submillimeter wave Far-IR Mid-IR N-IR visible UV 30cm 3cm 300 m m 30 m m 3 m m 3mm 30nm 300nm 10 9 10 10 11 12 13 14 15 16 10 10 10 10 10 10 PHz THz GHz plasmon in doped semiconductors, pseudo gap (High Tc SCs) antiferromagnetic resonance exciton ionization energy phonons, molecular vibrations carrier scattering rate g 2 D BCS (T c =10K) 40eV 4 m eV 40 m eV 4eV 0.4meV 4meV 40meV 0.4eV

  9. THz time-domain spectroscopy THz generation by femtosecond laser pulse Waveform and power spectrum Nonlinear crystal ( ZnTe, GaP,GaAs,…) Simultaneous measurements of amplitude and phase of E-field Determination of complex refractive Index without uisng Kramers-Kronig relation Imaging applications Time-resoved probe for ultrafast transient phenomena

  10. THz time-domain spectroscopy A gate optical pulse~10fs 10 M. Ashida, Jpn.J.Appl.Phys.47, 8221 (2008)

  11. Intense THz pulse generation from LiNbO 3 THz generation from LiNbO 3 J. Hebling et al ., Opt. Express 10 , 1161 (2002). : tilted pulse-front method J. Hebling et al ., J. Opt. Soc. Am. B 25 , B6 (2008). χ (2) (pm/V) Nonlinear n gr n ph 800nm THz crystal GaP 25 3.67 3.34 ZnTe 69 3.13 3.27 Large X (2) , but large phase mismatch LiNbO 3 168 2.25 4.96 tilted pulse-front method

  12. Intense THz pulse generation THz generation from LiNbO 3 J. Hebling et al ., : tilted pulse-front method Opt. Express 10 , 1161 (2002). 0.8 Electric Field (MV/cm) gate (a) wire grid × 3 (b) S. Watanabe, N. Minami, and R.Shimano, 0.4 Opt. Express 19 , 1528 (2011). parabolic 0.0 PM mirror (PM) Tight focusing with small PM Si × 6 -0.4 GaP 100kV/cm →700kV/cm LiNbO 3 0 2 4 6 8 10 PM Delay Time (ps) λ/4 f=80 Intensity (arb. units) 1.0 (c) Wollaston λ/2 prism 0.5 balanced grating f=-40 photo detector 0.0 f=80 0 1 2 3 Frequency (THz)

  13. Development laser-based table top THz pulse generation 6 DAST (EPFL) 5 Two color air plasma with mid-IR pump (AALS) Peak E-field (MV/cm) E=6MV/cm→B=2T LiNbO 3 +Metamatel. 4 (MIT) 3 2 Two color air plasma (UTokyo) LiNbO 3 (Kyoto) 1 (UTokyo) (MIT) 0 2008 2010 2012 2014 2016 Year

  14. Outline (1) Introduction (2) Photoexcitation in s-wave superconductor (3) Higgs mode in a s-wave superconductor NbN (4) Higgs mode in d-wave cuprate superconductors (5) Photocontrol of superconductors

  15. Super-to-normal transition by quasiparticle injection Two constraints:   † Total electron density c c N k s k s k , s    Total QP density f N N k s q k , s      1     m * f k 1 exp E μ* model s k    1 d 1    c   m * k tanh E Gap eq.   k N 0 V 2 E 2   c k       3 2 D D  D D  n  2 n 0 0 First order like transition C. S. Owen et al ., Phys. Rev. Lett. 28, 1559 (1972).

  16. Experiments in 1970’s

  17. Experiments in 1990’s: THz spectroscopy

  18. SDW gap dynamics in quasi-1D organic conductor

  19. Optical pump and THz probe experiment in a s-wave superconductor NbN M. Beck et al ., Phys. Rev. Lett. 107 , 177007 (2011).

  20. Near infrared excitation ① hot electron excitation by near infrared light ② relaxation of hot electrons through high energy emission ③ Cooper pair breaking by phonons ④ gradual suppression of superconductivity phonon Hot electron Near IR T * Energy DOS

  21. THz pumping: high density QP injection at the gap edge THz pulse Energy DOS ・ direct injection of QPs at the gap edge ・ nonequilibrium SC state dynamics

  22. THz pump THz probe experiment gate wire grid Si sample wire grid Si pump THz ZnTe (LiNbO 3 ) probe THz (ZnTe) balanced detection

  23. THz pump and THz probe in NbN

  24. THz pump and THz probe dynamics

  25. Order parameter dynamics in the BCS approximation Quench Problem: eff faster than the response rapid switching of the orientation of b k time of the pseudospin d   eff σ 2 b σ k k k dt  D D         x y ( t ) i ( t ) V ( ( t ) i ( t )) k k k   D D      eff b ( t ), ( t ), k k Order parameter change induced by external perturbation = change in the orientation of b k eff Barankov and Levitov, Collective precession of the pseudospin PRL 96 , 230403 (2006) = order parameter oscillation (Higgs mode)

  26. THz pump and THz probe dynamics THz pump and THz probe dynamics ・ What is this overshooting signal? Higgs?

  27. Outline (1) Introduction (2) Photoexcitation in s-wave superconductor (3) Higgs mode in a s-wave superconductor NbN (4) Higgs mode in d-wave cuprate superconductors (5) Photocontrol of superconductors

  28. History 1957 BCS theory of superconductor (Bardeen, Cooper&Schrieffer) 1958 Prediction of amplitude mode in superconductors (Anderson) 1960 Theory of spontaneous symmetry breaking (Nambu) 1960-61 Nambu-Goldstone theorem 1963-66 Anderson-Higgs mechanism(Anderson, Higgs) http://www.nobelprize.org/ BCS theory: Energy dispersion of the nonzero order parameter Energy dispersion of BCS Bogoliubov particle and antiparticle     Δ ( k ) V ( k , k ' ) c k c 0 quasipartice    ' k ' k ' breaks the invariance of the gauge transformation    i θ † † i θ c ce , c c e The dispersion of the quasiparticle

  29. Goldstone Theorem When spontaneous symmetry breaking occurs, massless collective mode with respect to the order parameter appears Free Energy E amplitude mode phase mode ( Nambu-Goldstone mode ) Re Ψ k Im Ψ I n particle physics: such a massless Nambu-Goldstone boson has never been observed. Instead, massive gauge bosons (W, Z) were found. Is N-G theorem wrong?

  30. Anderson-Higgs mechanism Free Energy Y Re Y 0 Im Y Local gauge transformation massive amplitude mode massive gauge boson

  31. Anderson-Higgs mechanism “ Anderson-Higgs mechanism ” or “ Brout-Englert-Higgs mechanism ” “ ABEGHHK'tH mechanism “ [for Anderson, Brout, Englert, Guralnik, Hagen, Higgs, Kibble and 't Hooft] Z,W boson, p-mesons, plasmon E amplitude mode phase mode ( Nambu-Goldstone mode ) k 0

  32. Massive gauge boson(photon) eating N-G mode in superconductors Meissner-Ochsenfeld effect 1933 Mass of transverse component of photon T > T c T < T c Meissner plasmon E “Plasmons, Gauge Invariance, and Mass” single particle Phys. Rev. 130, 439 (1963) excitations 2 D Higgs mode k Anderson 0

  33. PRB 1958

  34. Theoretical investigations: quantum quench problem Quenching the interaction U(t) much faster than τ Δ ~ ℏ/Δ ( Δ:order parameter ) Emergence of order parameter oscillation (Higgs mode) Free energy Theoretical studies for dynamics of nonequilibrium BCS state after nonadiabatic excitation Volkov et al ., Sov. Phys. JETP 38 , 1018 (1974). Barankov et al ., PRL 94 , 160401 (2004). Yuzbashyan et al ., PRL 96 , 230404 (2006). Gurarie et al ., PRL 103 , 075301 (2009). Podolsky, PRB 84 , 174522 (2011). A. P. Schnyder et al., PRB84, 214513 (2011) N. Tsuji et al., PRB 88 ,165115 (2013). 0 Re Ψ N. Tsuji et al ., PRL 110 , 136404 (2013).

  35. Higgs mode in superconductors: NbSe 2 BCS-CDW coexistent compound M.-A. Measson, et al., R. Sooryakumar and M. V. Klein, PRL 45 , 660 (1980). PRB 89 , 060503 (2014). P.B. Littlewood and C. M. Varma, PRL 47 , 811 (1982). For a recent review: D. Pekker and C. M. Varma, Annual Review of Condensed Matter Physics 6 , 269 (2015)

  36. Instead of quenching the interaction,… Quasiparticle injection by ultrafast optical pulse Energy photon h n quasiparticle Cooper pair E F Energy DOS 2D (0) 2D (T) The gap (order parameter) is determined self-consistently with the quasiparticle distribution f (  ) DOS

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend