holographic d wave superconductors
play

Holographic d-wave superconductors Francesco Benini Princeton - PowerPoint PPT Presentation

GGI workshop, 13 October 2010 Holographic d-wave superconductors Francesco Benini Princeton University with Chris Herzog, Rakibur Rahman, Amos Yarom based on 1006.0731 1007.1981 Outline Holographic superconductors d-wave


  1. GGI workshop, 13 October 2010 Holographic d-wave superconductors Francesco Benini Princeton University with Chris Herzog, Rakibur Rahman, Amos Yarom based on 1006.0731 1007.1981

  2. Outline ● Holographic superconductors ● d-wave superconductors charged massive spin-2 fields ● Fermionic operators and spectral function ● d-wave gap, Dirac nodes, Fermi arcs ● Future directions

  3. Real superconductors ● Superconductor: a system characterized by a transition to a state with zero resistivity (below T c ) It can be modeled by spontaneous breaking of U(1) e.m. Gizburg Landau ● BCS: weakly coupled description. E.g. cuprates look strongly coupled ● Phenomenology depends on the nature of the order parameter ● Cuprates: d-wave superconductors (spin-2 order parameter) ● Interesting phenomenology, ARPES & STM: d-wave gap, Dirac nodes, Fermi arcs, pseudo-gap, ... ● Motivation: how far can we go without using the details of the atomic structure, but only “symmetries” and basic features?

  4. Experimental results ● Normal phase: Fermi surface ● Superconducting phase: Fermi surface is gapped ● d-wave: anisotropic gap ~ |cos 2θ| ● 4 nodes ● Dirac cones at the nodes ● In pseudo-gap phase: nodes open into Fermi arcs

  5. Holographic Superconductors ● Holographic superfluid: a field theory (CFT) at temperature T ≥ 0 and non-zero chemical potential ρ , with U(1) global symmetry and charged order parameter ψ ● Holographic superconductor: weakly gauge the U(1) (photon) ● Study the CFT at strong coupling via AdS/CFT ● Study the behavior of extra operators (not directly involved in condensation), e.g. fermionic operators ● Bottom-up approach: focus on subset of fields

  6. AdS/CFT Map CFT d , T mn Gravity (Einstein-Hilbert) in g μν asymptotically AdS d+1 U(1) global, J m U(1) gauge symmetry, A μ Charged order parameter charged (massive) field O of dimension Δ ψ of mass m 2 z 2 ~ 2  − dt 2  CFT at T > 0 BH in AdS 2  d  2  dz ds x d − 1 z  0 L Turn on chemical potential  s  z d −− 1 〈 J m 〉 z − 1 A m ~ J m source J 0 (s) for J m  s  z # 〈 O 〉 z # No source O (s) , read off VEV O ~ O Causal CFT regular & infalling b.c. at horizon

  7. d-wave ● The order parameter is d-wave massive charged spin-2 field in the bulk → (graviton: massless neutral) ● Various problems could arise: wrong number of d.o.f. ghosts faster than light signals on non-trivial background ● What action?

  8. Spin-2 fields    − m 2     d , 1 ● E.g. : L =−∂    ∂ ℝ in ● Number of d.o.f.: symmetric φ μν massive spin-2 particle constraints  d  1  d  2  d  d  1  − 1 d  2 2 2 ● The extra modes contain ghosts .

  9. Fierz-Pauli action ● Fierz-Pauli action (unique quadratic and 2 derivatives): 2  ∣   ∣ 2  2  2 ∣   ∣ 2 − 2  2 − m 2 −  ∂   ∣ ∂   ∣ L FP =− ∣ ∂    ∣ where    and ≡     ≡∂ ● Get the equations: 2   0 =□− m } d  2 constraints 0 =  0 = ● Correct number of d.o.f., no ghosts, causal propagation

  10. Fierz-Pauli action 2  ∣   ∣ 2  2  2 ∣   ∣ 2 − 2   ∂   ∣ ∂   ∣ 2 − m 2 − L FP =− ∣ ∂    ∣ ● Coefficients uniquely fixed by either: require d+2 constraint equations use Stückelberg formalism and require not higher derivative terms    h   1 m ∂  B  ∂  B  − 1 2 ∂  ∂  X m  h  =∂    ∂     B  =∂  − m    X = 2m  require no ghosts nor tachyons in the propagator

  11. Charged Spin-2 field on background ● Covariant derivative: ∂   D  =∂    − iq A  → get the problems back! a L a − i q F  [ D  , D  ]= R  Solved by coupling to curvatures R μνρλ & F μν ● Write down most general quadratic 2-derivative action (up to dim d+1 operators) Require d+2 constraint equations ● Metric: background must be Einstein (vacuum) → probe limit Buchbinder Gitman Pershin ● F μν : background can be generic Federbush

  12. Charged spin-2 field on background ● Action: ∗ D   c.c. − m 2  2 ∣   ∣ 2  ∣ D   ∣ 2 − 2 − ∣  ∣ 2  2  ∣   ∣ L spin 2 =− ∣ D    ∣ 1 2 − i q F   ∗   − ∗    d  1 R ∣  ∣  2 R   ● Einstein background → probe limit L tot = R −− 1   L spin 2 4 F  F   =    / q A  =  ● Large q and small ρ : A  / q = / q matter & gauge fields do not L mat =  L mat / q backreact on the metric

  13. Charged Spin-2 field on background ∗ D   c.c. − m 2  2 ∣   ∣ 2  ∣ D   ∣ 2 − 2 − ∣  ∣ 2  2  ∣   ∣ L spin 2 =− ∣ D    ∣ 1 ∗   − 2 − i q F   ∗    d  1 R ∣  ∣  2 R   ● F μν new problem: faster than light signals → Velo 2  v max ≃  1  q ∣ F  ∣ m at large momenta (hyperbolic for small F μν ) ● Argyres-Nappi: causal action on 26-dimensional flat spacetime & constant F μν . Each term is non-linear function of F μν .

  14. Charged spin-2 field on background ● Argyres-Nappi action: ● We think of our action as first terms in expansion in q ∣ F  ∣ ≪ 1  ≫ 1 2 m

  15. AdS/CFT ● Field/operator correspondence: φ μν ↔ O mn  s  z 2 L − 2  O mn d −− 2 2 =− d   mn z  0 〈 O mn 〉 z ~  d m 2  − f  z  dt f  z   ● Ansatz: f  z = 1 −  z h  d 2 2 2 = L 2  dz z d 2  d  T = ds x d 4  z h z A = z  dt 2  xy = L ⇒ D    == 0 2  z  2 z ● Equations: same as s-wave! ● Boundary conditions: chemical potential ρ critical temperature → T c

  16. AdS/CFT ● There exist a critical temperature T c ● T > T c : normal state (charged BH) A = [ 1 −  ] dt z h  d − 2 z   = 0 ● T < T c : superconducting phase (condensate) φ xy ≠ 0 d = 2+1: ● Compute conductivity σ mn : in d = 2+1 isotropic at leading order

  17. Fermions ● In AdS/CFT only gauge-invariant operators: study fermionic operators bulk spinor Ψ composite fermionic operator ↔ O Ψ (from p.o.v. of weakly gauged U(1) “composite electron”) ● Compute retarded Green's function & spectral function:  ,  k = Tr Im G R  ,    0 }〉 G R  t ,  x = i  t 〈{ O   t ,  x  ,O  k  ● Direct connection with ARPES ● Green's function used to detect Fermi surface in normal phase Liu, McGreevy, Vegh Cubrovic, Zaanen, Schalm in the following d = 2+1

  18. Fermionic action ● What action? Write down all terms up to dimension 5 (on background): ∗   D ∗   c    h.c.  D  − m   2  c 3  i c 4  5   i ∣   ∣ L  = i  ∗  ∗  c  c 1  c 2  5  h.c.   ● We use: D  =∂    − i q ∗  c   D  − m    D ∗     h.c. L  = i  2 A  Faulkner, Horowitz, McGreevy, Roberts, Vegh ● Majorana-like term: considered for s-wave it gives rise to a gapped Fermi surface

  19. Retarded Green's function ● 2-point function:   0 }〉 G R  t ,  x = i  t 〈{ O   t ,  x  ,O  0 =  D  − m   2i     D   c ● EOM − i  t  i   ,  i  t − i  − , − probe k ⋅ k   z  e k ⋅ k   z  x   x  = e asymptotic =   2  − m  L z   O  z   e z  0   1 S    e  1 O  z  R  m  L z   ~ infalling b.c.  ,   ,  − , − G R  ,  k    k  = M   S   S  k  c t k =− i M  R  M  ● Spectral function (density of states):  ,  k = Tr Im G R  ,  k  sharp peaks dispersion relation ω( k ) of quasi-normal modes →

  20. The gap – E.g. s-wave ● Peaks in spectral func. → ω( k ) quasi-normal modes ● η = 0 : Fermi surface 0 = D  1   1 = E  ⇒ k  0 = D  2   2

  21. The gap – E.g. s-wave ● Peaks in spectral func. → ω( k ) quasi-normal modes ● η ≠ 0 : gap ∗ = E  0 = D  1   1  2 ⇒  : k  c : =− E − ∗  k  0 = D  2   2  1 Ψ: Ψ c :

  22. d-wave spectral function  D c       Coupling: ● E.g. : spectral func. at θ = fixed ω ● Exp procedure: for every θ 1) identify Fermi momentum k 2) draw EDC ω k x k y

  23. EDC's ● Compare Energy Distribution Curves with exp's: Kanigel et al, PRL 99 (2009) 157001 Underdoped Bi 2 Sr 2 CaCuO 8

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend