duality and axionic weak gravity
play

Duality and Axionic Weak Gravity Stefano Andriolo KU Leuven [based - PowerPoint PPT Presentation

Duality and Axionic Weak Gravity Stefano Andriolo KU Leuven [based on: SA, Huang, Noumi, Ooguri, Shiu 20 2004.13721] StringPheno Summer series 28th July 2020 THE SWAMPLAND [Vafa 05, Ooguri,Vafa 06] Landscape: Swampland:


  1. Duality and Axionic Weak Gravity Stefano Andriolo KU Leuven [based on: SA, Huang, Noumi, Ooguri, Shiu ’20 — 2004.13721] StringPheno Summer series 28th July 2020

  2. THE SWAMPLAND [Vafa ’05, Ooguri,Vafa ’06] Landscape: Swampland: EFT’s with QG completion EFT’s that do not have QG completion Boundary defined by Swampland criteria

  3. WEB OF CONJECTURES [Reviews: Brennan, Carta, Vafa 1711.00864 Palti 1903.06239] Maybe… String Lamppost Principle: all consistent QG theories are part of the string landscape

  4. MOTIVATIONS OF OUR WORK Test swampland criteria: - self-consistency : Linking conjectures in the web - consistency with other principles Unitarity, causality, locality, analyticity, duality, BH physics, SUSY, holography, anomalies,…

  5. MOTIVATIONS OF OUR WORK Test swampland criteria: - self-consistency : Linking conjectures in the web - consistency with other principles Unitarity, causality, locality, analyticity, duality, BH physics, SUSY, holography, anomalies,… Highlight the relevant properties/principles of QG Understand what makes string theory so special (QG unique?) “string theory so complete/rich ☑ ☑ ☑ = insurance with full options” ☑ ☑ ☑

  6. MOTIVATIONS OF OUR WORK Test swampland criteria: - self-consistency : Linking conjectures in the web - consistency with other principles Unitarity, causality, locality, analyticity, duality, BH physics, SUSY, holography, anomalies,… Highlight the relevant properties/principles of QG Understand what makes string theory so special (QG unique?) “string theory so complete/rich ☑ ☑ ☑ = insurance with full options” ☑ ☑ ☑

  7. THE PUNCH-LINE Analyse WGC (axionic version) vs positivity (unitarity, analyticity, locality) [Cheung,Remmen ’14, Andriolo,Junghans,Noumi,Shiu ’18, Hamada,Noumi,Shiu ’18,…] Result: - in simple systems: positivity is sufficient to imply the WGC - more often: positivity alone is not enough, but specifying some UV info is sufficient to satisfy the WGC (e.g., SL(2,R) symm) positivity [Heidenreich, Reece,Rudelius ’16, + WGC Montero,Shiu,Soler ’16, UV info Aalsma, Cole, Shiu ’19] See also Gregory’s talk on September 1st! [Loges,Noumi,Shiu ’19, ’20]

  8. OUTLINE Review of WGC and its axionic version ( A WGC) Question addressed Illustration of setup Positivity vs AWGC Adding SL(2,R) and implications

  9. WGC and AWGC

  10. Standard formulation of WGC : [Arkani-Hamed, Motl, Nicolis, Vafa ’06] - “An EFT with gauge U(1)+gravity is QG-consistent if it admits at least a state with charge-to-mass ratio greater than that of an extremal black hole (EBH)” qgM P since M EBH = gM P Q EBH (here D=4) ≥ 1 m - Motivated by requiring instability and decay of EBH’s - As swampland criterium, trivial for M P → ∞ - Encapsulates “no global symm in QG”, since never satisfied for g → 0 - Generalized to multiple U(1)’s [Tower/(sub-)lattice WGC] [Heidenreich, Reece, Rudelius ’15,’16, Montero,Shiu,Soler ’16, SA, Junghans, Noumi, Shiu ’18] - Generalized to other dimensions and abelian p-forms potentials

  11. AWGC is the generalisation to p=0 form potential (= axion ): (here D=4) WGC AWGC form field potential photon A µ axion/2-form dual θ /B µ ν charged states particles & black holes instantons & grav. instantons 1 coupling gauge coupling f=axion decay constant g f ( m, q ) relevant quantities mass, charge ( S, q ) action, charge m WGC bound Sf < 1 < O (1) qgM P Exists a state s.t. nM P regular solutions Extremal obj’s EBH’s [Eucl. wormholes] Interpretation Instability of EBH’s tunneling process via collection of smaller instantons favoured over single instanton w/ same tot q

  12. OBSERVATION… Higher order (string) corrections modify the classical BH extremality bound in a way that the same EBH’s (Q,M) can be the WGC states M M classically = 1 gQM P gQM P 1 Q 0 Q ∗ macroscopic obj’s M � M P (semi-classical reasonings)

  13. OBSERVATION… Higher order (string) corrections modify the classical BH extremality bound in a way that the same EBH’s (Q,M) can be the WGC states M M classically = 1 gQM P gQM P 1 HO corrections ∆ M < 0 � ∆ M M � < 1 = 1 + � gQM P gQM P � Q HO 0 Q ∗ macroscopic obj’s [Kats, Motl, Padi ’06] M � M P (semi-classical reasonings)

  14. …QUESTION Can the same happen for Euclidean wormholes? Sf � = 1 + ∆ Sf Sf � nM P < 1 ? � nM P nM P � HO 1 n 0 Under which circumstances ? ∆ S < 0

  15. SETUP

  16. β = 0 Classical Axio-dilaton-gravity (ADG) Axion-gravity (AG) 2( ∂ µ φ ) 2 − f 2  R � 2 − 1 Z d 4 x √− g 2 e βφ ( ∂ µ θ ) 2 S = 4 Euclidean wormhole solutions (non-singular class of solutions for ) β < √ 6 [reviews: Hebecker,Mangat,Theisen,Witkowski ’16, Hebecker-Mikhail-Soler ’18, Van Riet ’20] can be regarded as instanton—anti-instanton pair dr 2 ds 2 = + r 2 d Ω 2 r = r 0 3 1 − r 4 0 r 4 0 = n 2 f 2 24 π 4 cos 2 h √ i r 4 6 4 β · π 2 semiwormhole S = 2 | n | M P √ 4 π · | n | M P 6 h √ i (instanton) β = 0 6 4 β · π sin 2 β f f action

  17. β = 0 Classical Axio-dilaton-gravity (ADG) Axion-gravity (AG) 2( ∂ µ φ ) 2 − f 2  R � 2 − 1 Z d 4 x √− g 2 e βφ ( ∂ µ θ ) 2 S = 4 Euclidean wormhole solutions (non-singular class of solutions for ) β < √ 6 + HO (4-derivative) corrections , generic Z h a 1 ( φ )( ∂ µ φ∂ µ φ ) 2 + a 2 ( φ ) f 4 ( ∂ µ θ∂ µ θ ) 2 d 4 x √− g ∆ S = + a 3 ( φ ) f 2 ( ∂ µ φ∂ µ φ )( ∂ µ θ∂ µ θ ) + a 4 ( φ ) f 2 ( ∂ µ φ∂ µ θ ) 2 + a 5 ( φ ) W 2 + a 6 θ W ˜ i W Evaluation of gives… ∆ S

  18. - AG system : ∆ S = − 24 π 2 a 2 β = 0 - ADG system π  Z tan 4 h √ e − 2 βφ ( t ) sec 4 h √ 2 i i dt cos 3 t ∆ S = 36 π 2 6 6 � � � � φ ( t ) φ ( t ) − a 1 4 β · t − a 2 4 β · t 0 i � e − βφ ( t ) tan 2 h √ sec 2 h √ ⇣ �⌘ i 6 6 � � � + φ ( t ) + a 4 φ ( t ) a 3 4 β · t 4 β · t

  19. - AG system : ∆ S = − 24 π 2 a 2 β = 0 - ADG system π  Z tan 4 h √ e − 2 βφ ( t ) sec 4 h √ 2 i i dt cos 3 t ∆ S = 36 π 2 6 6 � � � � φ ( t ) φ ( t ) − a 1 4 β · t − a 2 4 β · t 0 i � e − βφ ( t ) tan 2 h √ sec 2 h √ ⇣ �⌘ i 6 6 � � � + φ ( t ) + a 4 φ ( t ) a 3 4 β · t 4 β · t we can use positivity conditions to determine (for any bg ) φ = φ ∗ − a 4 − 2 √ a 1 a 2 ≤ a 3 ≤ 2 √ a 1 a 2 a 1 ≥ 0 , a 2 ≥ 0 , a 4 ≥ 0 ,

  20. - AG system : ∆ S = − 24 π 2 a 2 < 0 β = 0 - ADG system π  Z tan 4 h √ e − 2 βφ ( t ) sec 4 h √ 2 i i dt cos 3 t ∆ S = 36 π 2 6 6 � � � � φ ( t ) φ ( t ) − a 1 4 β · t − a 2 4 β · t 0 i � e − βφ ( t ) tan 2 h √ sec 2 h √ ⇣ �⌘ i 6 6 � � � + φ ( t ) + a 4 φ ( t ) a 3 4 β · t 4 β · t we can use positivity conditions to determine (for any bg ) φ = φ ∗ − a 4 − 2 √ a 1 a 2 ≤ a 3 ≤ 2 √ a 1 a 2 a 1 ≥ 0 , a 2 ≥ 0 , a 4 ≥ 0 ,

  21. - AG system : ∆ S = − 24 π 2 a 2 β = 0 - ADG system π  Z tan 4 h √ e − 2 βφ ( t ) sec 4 h √ 2 i i dt cos 3 t ∆ S = 36 π 2 6 6 � � � � φ ( t ) φ ( t ) − a 1 4 β · t − a 2 4 β · t 0 i � ? Q 0 e − βφ ( t ) tan 2 h √ sec 2 h √ ⇣ �⌘ i 6 6 � � � + φ ( t ) + a 4 φ ( t ) a 3 4 β · t 4 β · t we can use positivity conditions to determine (for any bg ) φ = φ ∗ − a 4 − 2 √ a 1 a 2 ≤ a 3 ≤ 2 √ a 1 a 2 a 1 ≥ 0 , a 2 ≥ 0 , a 4 ≥ 0 , a 4 Simplified illustration (in the plane) a 2 = a 1 ∆ S > 0 Prohibited by positivity ∆ S < 0 Satisfy positivity, but WGC violated a 3 Satisfy positivity and WGC − 2 a 1 0 2 a 1 model-dep

  22. POSITIVITY INTERMEZZO (presto) ℒ = − 1 2( ∂ μ a ) 2 + α ( ∂ μ a ∂ μ a ) 2 + ⋯ Axion-gravity EFT where, for instance, arises after integrating out massive scalar α ϕ a a a a α = g 2 ϕ ϕ ( ∂ μ a ) 2 g g 2 m 2 ≥ 0 1 m 2 + p 2 a a a a and the sing of is related to the sign of propagator (unitarity) α generically, follows from unitarity, analyticity, locality α > 0 of UV scattering amplitudes [Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi ’06] - Caveat, assumption: gravitational Regge states are sub-dominant | α | > 1/ ( M 2 s M 2 Pl ) [Hamada-Noumi-Shiu ’18]

  23. Back to the ADG system: Can we assume some additional property and show that ∆ S < 0 ?

  24. “duality” SL(2,R) SYMMETRY [=SL(2,Z)+axion shift symm] τ = β 2 f θ + ie − β 2 φ Symmetry of the 2-derivative action τ → a τ + b ( a, b, c, d ∈ R , ad − bc = 1) c τ + d Extended to the HO 4-derivative action terms : only two SL(2,R) invariant operators τ ) 2 ( ∂ µ τ∂ µ ¯ ( ∂ µ τ∂ µ τ )( ∂ µ ¯ τ∂ µ ¯ τ ) + λ 2 λ 1 λ 1 , 2 = const ⌘ 4 ⌘ 4 ⇣ ⇣ β β (Im τ ) 4 (Im τ ) 4 2 2 4d parameter space 2d parameter space ( a 1 , a 2 , a 3 , a 4 ) ( λ 1 , λ 2 ) We are adding structure to EFT

  25. Evaluation of gives… ∆ S ∆ S = − 24 π 2 ( λ 1 + λ 2 ) Positivity means λ 1 + λ 2 ≥ 0 λ 2 ≥ 0

  26. Evaluation of gives… ∆ S ∆ S = − 24 π 2 ( λ 1 + λ 2 ) < 0 Positivity means λ 1 + λ 2 ≥ 0 λ 2 ≥ 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend