non minimal k inflation
play

Non-minimal k-inflation Wade Naylor High Energy Theory Group - PowerPoint PPT Presentation

Non-minimal k-inflation Wade Naylor High Energy Theory Group Osaka University (HETOU) APS2012, Kyoto, 2nd March 2012 In collaboration with T. Kubota, M. Nobuhiko and N. Okuda Nonminimal k-inflation Nomination for shortest title at APS2012


  1. Non-minimal k-inflation Wade Naylor High Energy Theory Group Osaka University (HETOU) APS2012, Kyoto, 2nd March 2012 In collaboration with T. Kubota, M. Nobuhiko and N. Okuda

  2. Nonminimal k-inflation Nomination for shortest title at APS2012 APS2012, Kyoto, 2nd March 2012 In collaboration with T. Kubota, M. Nobuhiko and N. Okuda

  3. /~20 Contents 3 • Comment (my non-Gaussianity) • Introduction • Model • Motivation • Jordan ≣ Einstein • Details on non-minimal k-inflation • Inflationary attractors even for K(φ)<0 • Power spectrum and tilt • Final comments (classical stability + non-Gaussianity)

  4. /~20 My non-Gaussianity spectrum ⇒ I should know everything they know need students like Misumi and Okuda 4 • Prof. Moss (Ph.D.) • Prof. Sasaki (Post Doc) • Prof. Kubota (HETOU) • Kubota-Moss-Sasaki scale invariant • Non-Gaussianity ⇒ I don’t know and

  5. /~20 Het Camp 2011 5 • Misumi and Okuda are nowhere to be seen?

  6. /~20 Introduction between two frames including non-Gaussianity 084022. al., Phys. Rev. D 80 (2009); ibid. 81 (2010) ] 6 • k-inflation can be motivated from effective field theory + curvature coupling terms, ξφ 2 R • Jordan or Einstein frame? • Single field models give full agreement • Qiu and Yang, Non-Gaussianities of single field inflation with non-minimal coupling , Phys. Rev. D 83 (2011) • non-minimal coupled DBI (ξ=0, 1/6) [ see Easson et

  7. /~20 Non-minimal k-inflation Model term 7 � d 4 x √− g � � S = f ( ϕ ) R + 2 P ( ϕ , X ) X = − 1 P ( ϕ , X ) = K ( ϕ ) X + L ( ϕ ) X 2 + · · · 2 g µ ν ∂ µ ϕ∂ ν ϕ • For example in a two field Lagrangian: L = 1 2( ∂φ ) 2 + 1 M ( ∂φ ) 2 + 1 2 M 2 ρ 2 + V ( φ ) − 1 2( ∂ρ ) 2 + ρ 2 ξ R ( φ 2 + ρ 2 ) • Then below some H<<M we can integrate out ρ to get 2( ∂φ ) 2 + ( ∂φ ) 4 L eff = 1 + ... + V ( φ ) − 1 2 ξ R φ 2 M 4 where M → M - ξ R/2 • Other examples might be DBI with more general ξ R φ 2

  8. /~20 Motivation observational data 1 st order derivatives in φ (cf. Horndeski/G- inflation at 2 nd order ) coupling ξ? large non-Gaussianity (e.g., equilateral limit): 8 • Obtain constraints on inflation models via • k-inflation with non-minimal coupling • Most general single field theory with up to • Can we get constraints on conformal • Due to variable sound speed, k-inflation can generate f NL ∝ 1 c 2 s

  9. /~20 Comment on E and J frames 9 Jordan frame Einstein frame (non-minimal) (minimal) action action S ˆ S mode function mode function ˆ u ˆ u k k b R = R b power spectrum power spectrum P R P b R non-Gaussianity non-Gaussianity � 0 | ˆ u k 3 | 0 ⇥ � 0 | u k 1 u k 2 u k 3 | 0 ⇥ u k 1 ˆ u k 2 ˆ T. Kubota, N. Misumi, W. Naylor and N. Okuda, JCAP 02 (2012) 034, arXiv: 1112.5233 [gr-qc]

  10. /~20 Standard k-inflation inflationary attractor solutions 10 (Armendariz-Picon, Damour, Mukhanov, 1999 ) � 1 ⇤ X = − 1 ⇥ d 4 x √− g S = 2 κ 2 R + P ( φ , X ) 2 g µ ν ∂ µ φ∂ ν φ P ( φ , X ) = K ( φ ) X + X 2 + · · · T µ ν = ∂ P ∂ X ⇥ µ φ ⇥ ν φ � Pg µ ν E ( φ , X ) = 2 XP ,X − P • Consider FLRW universe described by line element ds 2 = − dt 2 + a 2 ( t ) δ ij dx i dx j • Friedmann equation and the continuity equation are 3 H 2 = E master equation √ ˙ E = − 3 E ( E + P ) • K(φ) changing from <0 to >0 essentially leads to

  11. /~20 Attractors in k-inflation In k-inflation, the universe can expand exponentially using only master equation 11 (Armendariz-Picon, et al., PLB 458 1999) Solid lines are stable attractors √ ˙ E = − 3 E ( E + P ) P P=E E P=‐E

  12. /~20 k-inflation phase diagram We obtain similar attractor/slow-roll solutions in the non-minimal case (see later if time permits) 12 (Armendariz-Picon, et al., PLB 458 1999)

  13. /~20 non-minimal coupling ξ<0 obtained by substituting ξ→ -|ξ| Non-minimal k-inflation Conformal transformation via field redefinition 13 � 1 2 κ 2 R − 1 ⇤ ⇥ d 4 x √− g 2 ξφ 2 R + P ( φ , X ) S = g µ ν = Ω 2 g µ ν Ω 2 ≡ | 1 − ξκ 2 φ 2 | ˆ X = − 1 g µ ν ∂ µ φ∂ ν φ = Ω 2 ˆ 2 Ω 2 ˆ X � 1 ⇤ ⇥ ˆ 2 κ 2 ˆ R + ˆ ⌅ d 4 x S = − ˆ P ( φ , X ) g P ( φ , X ) = ˆ ˆ K ( φ ) ˆ X + ˆ L ( φ ) ˆ X 2 K ( φ ) = K ( φ ) − ξ ( K ( φ ) − 6 ξ ) κ 2 φ 2 ˆ ˆ L ( φ ) = L ( φ ) = 1 (1 − ξκ 2 φ 2 ) 2

  14. /~20 14 E.g., setting K( φ )=-1 • Actually even for K( φ )<0 effect of ξ >0 coupling leads ˆ to a sign change in K( φ ) ` H f L K 10 8 6 4 2 f - 4 - 2 2 4 • ξ=1/100,1/10 and 1/3

  15. /~20 15 K( φ )=-1 • Speed of sound c s stays small until dφ/dt (∝X) drops ` ` 2 X c 1.0 b b P , b P , b X X c 2 b 0.8 s = = b b X + 2 b X b E , b P , b P , b X b X X 0.6 0.4 X = 1 0.2 ˆ g µ ν ∂ µ φ∂ ν φ 2 ˆ f 0.5 1.0 1.5 f NL ∝ 1 c 2 • Note that level of non-Gaussianity s

  16. /~20 16 ξ=1/3) Example attractor solution • We see an attractor for E=p and E=-p (here for E 0.05 0.25 R 0.05 0.10 0.15 0.20 - 0.05 - 0.10 • More plots in progress ... - 0.15 - 0.20 - 0.25

  17. /~20 Power spectrum & spectral index new variables plots currently in progress (including e-foldings)... 17 a 3 ˆ � � ˆ S (2) = � � ( ⇥ R ) 2 � ˆ ˙ d ˆ td 3 x R 2 − ˆ ˆ a ˆ c 2 ˆ s ˙ X b b b ˙ ˙ P , b b b H c s ✏ X b b b , , s = ✏ = − H 2 = ⌘ = b b ✏ b c s b • Slow roll parameters: H 2 b b H H s ⇥ 2 v � ¨ z v � c 2 ¨ z v = 0 a 2 b z 2 = 2 b ✏ v = z b ⇣ ⌘ R , k 2 − ¨ z s b c 2 c 2 b v b v b ¨ k + k = 0 s z (Note that ĉ s is a function of time ⇒ d ĉ s /dt <<1 ) • Standard quantization leads to: d ln P b R b b E 2 H 2 1 1 b b b R k b = − 2 b ✏ − b ⌘ − b P k = = ✏ , n s − 1 = s b E + b b d ln b 36 ⇡ 2 8 ⇡ 2 c s b b P k

  18. 18 /~20 Appendix: Conformal properties d ˆ a = Ω a d ˆ τ = d τ t = Ω dt ˆ � 2 ˆ � ( Ω 2 ) � R = Ω 2 � � Ω 2 ≡ | 1 − ξκ 2 φ 2 | ˆ R + 3 X Ω 2 � ˙ � ( Ω 2 ) � Ω 2 Ω 2 + 3 K = K � 2 P = P Ω 4 + 3 � 2 ˆ ˆ 2 Ω 2 Ω 2 4 ˙ Ω 2 H = 1 H + 1 � � b ˆ R = R Ω 2 Ω 2 � ˙ ˙ ¨ Ω 2 Ω 2 Ω 2 H = 1 H − 1 Ω 2 − 3 + 1 ˆ � � � ˙ ˙ 2 H Ω 2 Ω 2 Ω 2 4 2

  19. /~20 (to be confirmed) Preheating in non-minimal K-inflation interesting? • permitting) contribution coming from ξ (later slide, time Shape of non-Gaussianity is important and has • minimal coupling broadens allowed parameter space Final Comments investigation, even for DBI non-minimal models (next slide) Classical stability (backreaction) needs further • characteristic signal, different from other models? In k-inflation with non-minimal coupling, is there a • 19 • Non-canonical models lead to non-Gaussianity & non-

  20. /~20 20 • In Jordan frame easy to see , where Classical stability? • However another instability can be found from EOM: • G G e ff = 1 − φ 2 / φ 2 φ c2 = ( κ 2 ξ ) -1 =M pl2 /(8 πξ ) c R µ ν − 1 1 P X 2 φ + P φ + ( P XX r µ X + P X φ r µ φ ) r µ φ = ξφ R 2 g µ ν R = T µ ν M 2 pl g µ ν 2 ( φ 2 ) � r µ r ν ( φ 2 ) + ( R µ ν � 1 h 2 g µ ν R ) φ 2 T µ ν = P X r µ φ r ν φ + g µ ν P + ξ Taking trace of T µ ν and subbing back into EOM ⇒ ˜ φ 2 P X + 6 ξ � 6 ξφ P X φ r µ φ r µ φ � 6 ξφ P XX r µ X r µ φ + 4 P � 6 ξφ P φ h⇣ ⌘ i c R = pl ( φ 2 � ˜ M 2 P X P X P X φ 2 c ) M 2 where ( P x =1 , standard result) ˜ pl φ 2 c = ξ (1 − 6 ξ /P X ) ℋ constraints ⇒ only for anistropic spacetimes; cf. φ > ˜ φ c Futamase et al., Phys.Rev. D 39 (1989) 405-411

  21. /~20 equilateral limit k-inflation with non-minimal coupling 21 squeezed limit • Shape of non-Gaussianity from ξ-contribution F(1,x 2 ,x 3 )x 22 x 32 x 2 =k 2 /k 1 x 3 =k 3 /k 1 • In all limits non-minimal part has nonzero value F ( k 1 , k 2 , k 3 ) ∝ 3 k 1 k 2 k 3 + 1 X k i k j 2 k 3 k 2 k 1 k 2 k 3 i>j • Result from N. Misumi’s Master’s thesis (cf. Qiu & Yang)

  22. /~20 Appendix: Other shapes 22 The shape of non-Gaussianity depends on model of inflation; however, current data not sensitive to shape; only overall amplitude f NL F(1,x 2 ,x 3 )x 22 x 32 x 3 =k 3 /k 1 , x 2 =k 2 /k 1 (Babich et al. 2004)

  23. /~20 23 Appendix: ADM Decomposition are given by • In what follows drop the hat and for Einstein frame ds 2 = − N 2 dt 2 + h ij ( dx i + N i dt )( dx j + N j dt ) N i ∆ t S = 1 t + ∆ t � √ hN [ R (3) + 2 P + N − 2 ( E ij E ij − E 2 )] dx i d 4 x 2 N ∆ t E ij = 1 2(˙ h ij � ⇥ i N j � ⇥ j N i ) t • Hamiltonian and momentum constraints equations R (3) + 2 P − 2 N − 2 P ,X ( ˙ φ − N i ∂ i φ ) 2 − N − 2 ( E ij E ij − E 2 ) = 0 i ) � ⇥ i ( N − 1 E ) = P ,X N − 1 ∂ i φ ( ˙ ⇥ j ( N − 1 E j φ � N i ∂ i φ ) • Solve constraints equations to first order only for N and N i (Chen et al. JCAP 01); in unitary gauge h ij = a 2 e 2 R δ ij δφ = 0 ,

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend