noise and number of sensors
play

noise and number of sensors Giovanni Capellari Eleni Chatzi - PowerPoint PPT Presentation

Optimal sensor placement through Bayesian experimental design: effect of measurement noise and number of sensors Giovanni Capellari Eleni Chatzi Stefano Mariani 3 rd International Electronic Conference on Sensors and Aplications, 10-15 November


  1. Optimal sensor placement through Bayesian experimental design: effect of measurement noise and number of sensors Giovanni Capellari Eleni Chatzi Stefano Mariani 3 rd International Electronic Conference on Sensors and Aplications, 10-15 November 2016

  2. Motivation Structural Health Monitoring can be conceptually divided in three stages: in our work, we will focus on the design of the sensor network SHM system design ๐’† Data collection ๐’› Parameters estimation ๐œพ Decision making

  3. Motivation Optimal The usefulness of the sensor network depends on the SHM system number, type and location of the sensors. Therefore, design we need a method to quantify the information obtained by the acquisition system. measurement error Estimates SHM system Uncertainty Identifiability cost configuration # sensors

  4. Optimal sensor placement: deterministic methods The existing approaches does not take into account the measurement noise, i.e. the sensors accuracy. EFI EVP KE Sensitivity to damage M. Meo , G. Zumpano , (2005), M. Bruggi , S. Mariani , (2013), Leyder , C., Ntertimanis , V., Chatzi , E., Frangi , A. (2015).

  5. Optimal sensor placement: Bayesian framework In a Bayesian sense, the optimal spatial configuration ๐’† โˆ— of the sensor network can be found by maximizing the Shannon information gain. In order to compute it, we use a Monte Carlo approximation. Expected gain in Shannon information ๐’† โˆ— = arg max ๐’†โˆˆ๐‘ฌ ๐‘‰(๐’†) ๐‘‰ ๐’† = เถฑ เถฑ ๐‘ฃ ๐’†, ๐’›, ๐œพ ๐‘ž ๐œพ, ๐’› ๐’† ๐‘’๐œพ๐‘’๐’› ๐’ ฮ˜ Monte Carlo sampling Prior: ๐œพ~๐‘ž ๐œพ Likelihood: ๐’›~๐‘ž(๐’›|๐œพ, ๐’†) ๐‘œ ๐‘๐‘ฃ๐‘ข ๐‘œ ๐‘—๐‘œ 1 1 ln ๐‘ž ๐’› ๐‘— ๐œพ ๐‘— , ๐’† ๐‘ž ๐’› ๐‘— ๐œพ ๐‘˜ , ๐’† ๐‘‰ ๐’† โ‰ˆ เท โˆ’ ln เท ๐‘œ ๐‘๐‘ฃ๐‘ข ๐‘œ ๐‘—๐‘œ ๐‘—=1 ๐‘˜=1 X. Huan , Y. M. Marzouk , (2013).

  6. Model evaluation The measurements are related to the mechanical parameters to be estimated through a FEM-based forward model. The sensor accuracy is taken into account through a fictitious measurement noise. โ€ข Evaluation of the likelihood ๐‘ž ๐’› ๐‘— ๐œพ ๐‘˜ , ๐’† = ๐‘ž ๐› ๐’› ๐‘— โˆ’ ๐‘ฏ ๐œพ ๐‘˜ , ๐’† โ€ข Forward model ๐’› = ๐‘ฏ ๐œพ, ๐’† + ๐› Measurement noise ๐‘ฏ ๐œพ, ๐’† = ๐‘ด ๐’† ๐‘ณ(๐œพ) โˆ’1 ๐‘ฎ ๐‘œ ๐œพ ๐น ๐‘— ๐‘ณ ๐œพ = เท ๐น โˆ’ 1 ๐‘ณ ๐‘ฃ๐‘œ๐‘’ โˆ’ ๐‘ณ ๐‘— Observation matrix ๐‘—=1

  7. Optimization In order to reduce the computational cost of the forward model, a cheaper surrogate model is built. โ€ข Surrogate model: polynomial chaos expansion ๐œพ ๐‘— ~๐‘ž ๐œพ , ๐’† ๐‘— ~๐’ฑ ๐“” ๐‘ˆ ๐’† ๐‘— ๐‘ˆ ๐’€ ๐‘— = ๐œพ ๐‘— ๐’› ๐‘„๐ท๐น = ๐‘ ๐’€ = ฯƒ ๐œทโˆˆโ„• ๐‘ ๐‘ง ๐›ฝ ๐œ” ๐›ฝ ๐’€ ๐’› ๐‘— ๐บ๐น = ๐‘ฏ ๐œพ ๐‘— , ๐’† ๐‘— โ€ข Optimization: Covariance Matrix Adaptation Evolution Strategy (CMA-ES) ๐’ โˆˆ โ„ ๐‘œ ๐’† , ๐‘ซ โˆˆ โ„ ๐‘œ ๐’†ร— ๐‘œ ๐’† 1 . ๐’† ๐‘— ~๐’ + ๐œ๐’ช ๐‘— ๐Ÿ, ๐‘ซ 2. ๐’ and ๐‘ซ are updated through cumulation 3. Check the tolerance on ๐‘‰ ๐’† N. Hansen , S.D. Mรผller , P. Koumoutsakos , (2003).

  8. Bayesian OSP framework Training surrogate model Maximizing information Sample input variables Sample design variable ๐œพ ๐‘— ~๐‘ž ๐œพ , ๐’† ๐‘— ~๐’ฑ ๐“” ๐’† ๐‘š ๐‘ˆ ๐’† ๐‘— ๐‘ˆ ๐’€ ๐‘— = ๐œพ ๐‘— MC approximation ๐‘‰(๐’† ๐‘š ) System response ๐‘ฏ ๐บ๐น ๐œพ ๐‘— , ๐’† ๐‘— Update ๐’† ๐‘š โ†’ ๐’† ๐‘š+1 (CMA-ES) PCE surrogate ๐‘ฏ ๐บ๐น ๐œพ ๐‘— , ๐’† ๐‘— โ‰… ๐‘ฏ ๐‘„๐ท๐น ๐œพ ๐‘— , ๐’† ๐‘— Check tolerance on ๐‘‰ ๐’† ๐‘š โˆ’ ๐‘‰ ๐’† ๐‘š+1 Optimal configuration ๐’† โˆ—

  9. Application: simply supported plate 10x10 mesh: 726 d.o.f. Displacement measurements 4 zones: ๐œพ = ๐น 1 , ๐น 2 , ๐น 3 , ๐น 4

  10. Application: simply supported plate Choice of prior distribution ๐‘ž ๐œพ Optimal position of ๐‘œ ๐‘ก = 4 sensors, results of 10 algorithm runs ๐œพ = ๐น 1 ๐น 2 ๐น 3 ๐น 4 ๐‘‚ ๐‘ก : # sensors ๐‘‚ ๐‘„๐ท๐น : # PCE samples ๐‘‚ ๐‘ก = 4, ๐‘‚ ๐‘„๐ท๐น = 10 4 , ๐‘ž : PCE polynomial degree ๐‘ž = 10 , ๐‘‚ ๐‘๐ท = 5 ยท 10 3 ๐‘‚ ๐‘๐ท : # MC samples ๐‘ž ๐œพ ~๐’ฑ 2 ๐น ๐‘ž ๐œพ ~๐’ฑ 0, ๐น 3 , ๐น

  11. Application: simply supported plate Effect of ฯƒ ๐› Contour of the objective function with one sensor for each possible location on the plate with different standard deviations of the measurement noise. 2 ๐œ—~๐’ช 0, ๐œ ๐œ— ๐‘‚ ๐‘ก : # sensors ๐œพ = ๐น 2 ๐‘‚ ๐‘„๐ท๐น : # PCE samples ๐‘‚ ๐‘ก = 1, ๐‘‚ ๐‘„๐ท๐น = 10 4 , ๐‘ž : PCE polynomial degree ๐‘ž = 10 , ๐‘‚ ๐‘๐ท = 5 ยท 10 3 ๐‘‚ ๐‘๐ท : # MC samples 0.6936 2.9 0.697 0.6935 0.6965 0.6934 2.8 0.696 0.6933 2.7 0.6932 0.6955 0.6931 0.695 2.6 0.693 0.6945 0.6929 2.5 0.694 0.6928 0.6935 2.4 0.6927 0.693 0.6926 ฯƒ ๐œ— = 10 โˆ’3 m ฯƒ ๐œ— = 10 โˆ’4 m ฯƒ ๐œ— = 10 โˆ’5 m

  12. Application: simply supported plate Effect of ฯƒ ๐› and number of sensors Contour of the objective function with one sensor for different standard deviations and number of sensors. 2 ๐œ—~๐’ช 0, ๐œ ๐œ— ๐‘‚ ๐‘ก : # sensors ๐œพ = ๐น 2 ๐‘‚ ๐‘„๐ท๐น : # PCE samples ๐‘‚ ๐‘„๐ท๐น = 10 4 , ๐‘ž : PCE polynomial degree ๐‘ž = 10 , ๐‘‚ ๐‘๐ท = 5 ยท 10 3 ๐‘‚ ๐‘๐ท : # MC samples

  13. Conclusions โ€ข Optimal sensor placement and SHM system design โ€ข Take into account: Bayesian optimal experimental design - Measurements uncertainties - Number of sensors โ€ข Maximization of expected information gain between prior and posterior โ€ข Use of surrogate model (PCE) for MC approximation and stochastic optimization (CMA-ES) methods for computational speed-up โ€ข Future developments: larger number of sensors, larger number of parameters, application to complex cases

  14. References Bruggi , M., and Mariani , S. (2013). โ€œOptimization of sensor placement to detect damage in flexible plates.โ€ Engineering Optimization , 45(6), 659 โ€“ 676. Capellari , G., Eftekhar Azam , S., Mariani , S. (2016). โ€œTowards real -time health monitoring of structural systems via recursive Bayesian filtering and reduced order modelling.โ€ International Journal of Sustainable Materials and Structural Systems , In Press. Hansen , N., Mรผller , S. D., Koumoutsakos , P. (2003). โ€œReducing the time complexity of the derandomized evolution strategy with Covariance Matrix Adaptation (CMA- ES).โ€ Evolutionary Computation , 11(1), 1-18. Huan , X., and Marzouk , Y. M. (2013). โ€œSimulation -based optimal Bayesian experimental design for nonlinear systems.โ€ Journal of Computational Physics , 232(1), 288 โ€“ 317. Leyder , C., Ntertimanis , V., Chatzi , E., Frangi , A. (2015). โ€œOptimal sensors placement for the modal identification of an innovative timber structure.โ€ Proceedings of the 1 st International Conference on Uncertainty Quantification in Computational Sciences and Engineering , 467-476. Lindley , D. V. (1972). Bayesian Statistics, A Review , Society for Industrial and Applied Mathematics, SIAM. Marelli , S., and Sudret , B. (2015). UQLab User Manual , Chair of Risk, Safety & Uncertainty Quantification, ETH Zรผrich. Capellari , G., Chatzi , C., Mariani , S. (2016). An optimal sensor placement method for SHM based on Bayesian experimental design and Polynomial Chaos Expansion Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering . Meo , M., and Zumpano , G. (2005). โ€œOn the optimal sensor placement techniques for a bridge structure.โ€ Engineering Structures , 27, 1488-1497. Ryan , K. J. (2003). โ€œEstimating expected information gains for experimental designs with application to the random fatigue-limit model .โ€ Journal of Computational and Graphical Statistics , 12(3), 585-603. Papadimitriou , C., (2004). โ€œOptimal sensor placement methodology for parametric identification of structural systems.โ€ Journal of Sound and Vibration, 278 (4), 923-947.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend