no idle no wait when shop scheduling meets dominoes
play

No-Idle, No-Wait: When Shop Scheduling Meets Dominoes, Eulerian and - PowerPoint PPT Presentation

No-Idle, No-Wait: When Shop Scheduling Meets Dominoes, Eulerian and Hamiltonian Paths J.C. Billaut 1 , F.Della Croce 2 , Fabio Salassa 2 , V. Tkindt 1 1 . Universit e Francois-Rabelais, CNRS, Tours, France 2 . Politecnico di Torino, Torino,


  1. No-Idle, No-Wait: When Shop Scheduling Meets Dominoes, Eulerian and Hamiltonian Paths J.C. Billaut 1 , F.Della Croce 2 , Fabio Salassa 2 , V. T’kindt 1 1 . Universit´ e Francois-Rabelais, CNRS, Tours, France 2 . Politecnico di Torino, Torino, Italy Monash University Melbourne, February 19th, 2018 1 / 72

  2. Flow Shop Scheduling 2 / 72

  3. Flow Shop Scheduling ◮ There are m machines and n jobs. 3 / 72

  4. Flow Shop Scheduling ◮ There are m machines and n jobs. ◮ Each job contains exactly m operations. 4 / 72

  5. Flow Shop Scheduling ◮ There are m machines and n jobs. ◮ Each job contains exactly m operations. ◮ For each operation of each job a processing time is specified. 5 / 72

  6. Flow Shop Scheduling ◮ There are m machines and n jobs. ◮ Each job contains exactly m operations. ◮ For each operation of each job a processing time is specified. ◮ No machine can perform more than one operation simultaneously. 6 / 72

  7. Flow Shop Scheduling ◮ There are m machines and n jobs. ◮ Each job contains exactly m operations. ◮ For each operation of each job a processing time is specified. ◮ No machine can perform more than one operation simultaneously. ◮ Operations cannot be interrupted (no preemption). 7 / 72

  8. Flow Shop Scheduling ◮ Operations within one job must be performed in the specified order. 8 / 72

  9. Flow Shop Scheduling ◮ Operations within one job must be performed in the specified order. ◮ The first operation gets executed on the first machine, then (as the first operation is finished) the second operation on the second machine, and so until the m -th operation. 9 / 72

  10. Flow Shop Scheduling ◮ Operations within one job must be performed in the specified order. ◮ The first operation gets executed on the first machine, then (as the first operation is finished) the second operation on the second machine, and so until the m -th operation. ◮ Jobs can be executed in any order. 10 / 72

  11. Flow Shop Scheduling ◮ Operations within one job must be performed in the specified order. ◮ The first operation gets executed on the first machine, then (as the first operation is finished) the second operation on the second machine, and so until the m -th operation. ◮ Jobs can be executed in any order. ◮ The problem is to determine an optimal arrangement of jobs. 11 / 72

  12. Flow Shop Scheduling – Example j J 1 J 2 J 3 J 4 p 1 , j 2 4 5 1 p 2 , j 3 4 2 1 p 3 , j 4 2 1 1 Machine Makespan p 14 p 11 p 12 p 13 M 1 p 21 p 22 p 23 p 24 M 2 p 31 p 32 p 33 p 34 M 3 Time 12 / 72

  13. Problem Description 13 / 72

  14. Problem Description ◮ We consider flow shop scheduling problems with (machine) no-idle, (job) no-wait constraints and makespan as objective. 14 / 72

  15. Problem Description ◮ We consider flow shop scheduling problems with (machine) no-idle, (job) no-wait constraints and makespan as objective. ◮ Machine no-idle constraint : use of very expensive equipment with the fee determined by the actual time consumption. 15 / 72

  16. Problem Description ◮ We consider flow shop scheduling problems with (machine) no-idle, (job) no-wait constraints and makespan as objective. ◮ Machine no-idle constraint : use of very expensive equipment with the fee determined by the actual time consumption. ◮ Job no-wait constraint : in metal-processing industries (e.g., hot rolling) where delays between operations interfere with the technological process (e.g., cooling down). 16 / 72

  17. Problem Description ◮ We consider flow shop scheduling problems with (machine) no-idle, (job) no-wait constraints and makespan as objective. ◮ Machine no-idle constraint : use of very expensive equipment with the fee determined by the actual time consumption. ◮ Job no-wait constraint : in metal-processing industries (e.g., hot rolling) where delays between operations interfere with the technological process (e.g., cooling down). ◮ We focus on problem F 2 | no-idle, no-wait | C max . 17 / 72

  18. Literature ◮ Problem F 2 || C max (Johnson rule O ( nlogn )) ∈ P . 18 / 72

  19. Literature ◮ Problem F 2 || C max (Johnson rule O ( nlogn )) ∈ P . ◮ Problem F 2 | no-idle | C max (trivially packing the jobs on the second machine to the right from Johnson’s schedule) ∈ P . 19 / 72

  20. Literature ◮ Problem F 2 || C max (Johnson rule O ( nlogn )) ∈ P . ◮ Problem F 2 | no-idle | C max (trivially packing the jobs on the second machine to the right from Johnson’s schedule) ∈ P . ◮ Problem F 2 | no-wait | C max (special case of Gilmore-Gomory TSP) ∈ P . 20 / 72

  21. Literature ◮ Problem F 2 || C max (Johnson rule O ( nlogn )) ∈ P . ◮ Problem F 2 | no-idle | C max (trivially packing the jobs on the second machine to the right from Johnson’s schedule) ∈ P . ◮ Problem F 2 | no-wait | C max (special case of Gilmore-Gomory TSP) ∈ P . ◮ Problem F 3 || C max is NP -hard. 21 / 72

  22. Literature ◮ Problem F 2 | no-wait |G (minimizing the number of interruptions on the last machine in a 2-machine no-wait flow shop) is solvable in O ( n 2 ) time (Hohn et al. 2012). 22 / 72

  23. Literature ◮ Problem F 2 | no-wait |G (minimizing the number of interruptions on the last machine in a 2-machine no-wait flow shop) is solvable in O ( n 2 ) time (Hohn et al. 2012). ◮ Problem F 3 | no-wait |G is NP -hard. (Hohn et al. 2012). 23 / 72

  24. Literature ◮ Problem F 2 | no-wait |G (minimizing the number of interruptions on the last machine in a 2-machine no-wait flow shop) is solvable in O ( n 2 ) time (Hohn et al. 2012). ◮ Problem F 3 | no-wait |G is NP -hard. (Hohn et al. 2012). ◮ Problems F 2 || � C j , F 2 | no-wait | � C j , F 2 | no-idle | � C j , F 2 | no-idle, no-wait | � C j are NP -hard (Adiri and Pohoryles 1982). 24 / 72

  25. F 2 | no-idle, no-wait | C max 25 / 72

  26. F 2 | no-idle, no-wait | C max ◮ Two Machines M 1 , M 2 . 26 / 72

  27. F 2 | no-idle, no-wait | C max ◮ Two Machines M 1 , M 2 . ◮ Flow Shop environment. 27 / 72

  28. F 2 | no-idle, no-wait | C max ◮ Two Machines M 1 , M 2 . ◮ Flow Shop environment. ◮ n jobs 1 , 2 , . . . , n with processing times p 1 j and p 2 j . 28 / 72

  29. F 2 | no-idle, no-wait | C max ◮ Two Machines M 1 , M 2 . ◮ Flow Shop environment. ◮ n jobs 1 , 2 , . . . , n with processing times p 1 j and p 2 j . ◮ No-idle time is allowed (both machines M 1 , M 2 must work continuously). 29 / 72

  30. F 2 | no-idle, no-wait | C max ◮ Two Machines M 1 , M 2 . ◮ Flow Shop environment. ◮ n jobs 1 , 2 , . . . , n with processing times p 1 j and p 2 j . ◮ No-idle time is allowed (both machines M 1 , M 2 must work continuously). ◮ No-wait discipline (no buffer — each job must start on M 2 right after its completion on M 1 ). 30 / 72

  31. F 2 | no-idle, no-wait | C max ◮ Two Machines M 1 , M 2 . ◮ Flow Shop environment. ◮ n jobs 1 , 2 , . . . , n with processing times p 1 j and p 2 j . ◮ No-idle time is allowed (both machines M 1 , M 2 must work continuously). ◮ No-wait discipline (no buffer — each job must start on M 2 right after its completion on M 1 ). ◮ Makespan (i.e. total time that elapses from the beginning to the end) objective. 31 / 72

  32. F 2 | no-idle, no-wait | C max ◮ The no-idle , no-wait constraint is a very strong requirement. Machine C 1[1] C 1[2] C 1[3] C 1[4] p 1[1] p 1[2] p 1[3] p 14 M 1 p 2[1] p 2[2] p 2[3] p 2[4] M 2 C 2[1] C 2[2] C 2[3] C 2[4] ◮ p i [ j ] denotes the processing time of the j -th job of a sequence σ on machine M i . ◮ C i [ j ] denotes the completion time of the j -th job of a sequence σ on machine M i . 32 / 72

  33. F 2 | no-idle, no-wait | C max Lemma (1) (C1) A necessary condition to have a feasible solution for problem F 2 | no − idle , no − wait | C max is that there always exists an indexing of the jobs so that p 1 , 2 , ... p 1 , n and p 2 , 1 , ..., p 2 , n − 1 constitute different permutations of the same vector of elements. 33 / 72

  34. F 2 | no-idle, no-wait | C max Lemma (1) (C1) A necessary condition to have a feasible solution for problem F 2 | no − idle , no − wait | C max is that there always exists an indexing of the jobs so that p 1 , 2 , ... p 1 , n and p 2 , 1 , ..., p 2 , n − 1 constitute different permutations of the same vector of elements. j J 1 J 2 J 3 J 4 J 5 p 1 , j 5 8 7 6 7 p 2 , j 8 5 6 7 7 34 / 72

  35. F 2 | no-idle, no-wait | C max Lemma (1) (C1) A necessary condition to have a feasible solution for problem F 2 | no − idle , no − wait | C max is that there always exists an indexing of the jobs so that p 1 , 2 , ... p 1 , n and p 2 , 1 , ..., p 2 , n − 1 constitute different permutations of the same vector of elements. 35 / 72

  36. F 2 | no-idle, no-wait | C max Lemma (1) (C1) A necessary condition to have a feasible solution for problem F 2 | no − idle , no − wait | C max is that there always exists an indexing of the jobs so that p 1 , 2 , ... p 1 , n and p 2 , 1 , ..., p 2 , n − 1 constitute different permutations of the same vector of elements. (C2) When the above condition (C1) holds, then Case 1 if p 1 , 1 � = p 2 , n , every feasible sequence must have a job with processing time p 1 , 1 in first position and a job with processing time p 2 , n in last position. Case 2 if p 1 , 1 = p 2 , n and there exists a feasible sequence, then there do exist at least n feasible sequences each starting with a different job by simply rotating the starting sequence as in a cycle. 36 / 72

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend