nir spectroscopy of star forming galaxies at z 1 4 with
play

NIR Spectroscopy of Star-Forming Galaxies at z~1.4 with Subaru/FMOS - PowerPoint PPT Presentation

ALMA 1 n 2013 1 28 /FMOS z~1.4 ( ) NIR Spectroscopy of Star-Forming Galaxies


  1. ALMA 時代の宇宙の構造形成理論:第 1 世代から第 n 世代へ 2013 年 1 月 28 日 北海道大学 すばる /FMOS で探る z~1.4 付近の星形成銀河 矢部清人 ( 国立天文台 ) NIR Spectroscopy of Star-Forming Galaxies at z~1.4 with Subaru/FMOS Kiyoto Yabe (NAOJ) Collaborators: Kouji Ohta, Fumihide Iwamuro, Suraphong Yuma, Masayuki Akiyama, Naoyuki Tamura, and FMOS GTO team

  2. ALMA 時代の宇宙の構造形成理論:第 1 世代から第 n 世代へ 2013 年 1 月 28 日 北海道大学 Introduction: Why Metallicity? • Gas-phase metallicity is a key to understand the galaxy evolution ✓ Heavy elements are synthesized in stars and returned into ISM ✓ Metallicity traces the past star-formation activity ✓ It also changes via gas flow of galaxies ✓ Gas inflow/outflow rate may be able to be constrained Tremonti+2004 • Correlation between stellar mass and metallicity ✓ Firstly reported by Lequeux+1979 for nearby Irr, blue compact galaxies ✓ Massive galaxies tend to show larger metallicity ✓ The mass-metallicity relation is well red line: best-fit established at local universe thanks to the large metallicity SDSS sample (Tremonti+04) ✓ Evolutionary sequence of each galaxy population: Massive galaxies are (chemically) well evolved? stellar mass

  3. ALMA 時代の宇宙の構造形成理論:第 1 世代から第 n 世代へ 2013 年 1 月 28 日 北海道大学 Introduction: Mass-Metallicity Relation at High Redshift • MZ relation at z~2 (e.g., Erb+06) and z~3(e.g.,Maiolino+08) ✓ Evolution of the MZ relation from z~3 to z~0? ✓ Still controversy as to the MZ relation at z~2 (Hayashi+09, Yoshikawa+10, Onodera+10) ✓ We need larger sample at z~2 Maiolino+08 Erb+06 SDSS@z~0.1 0.2-0.3 dex z ~ 2 Metallicity z ~ 2 z ~ 2 Onodera+10 Hayashi+09 Stellar Mass Erb+06 Erb+06 Erb+06 ↑ Sample size ~ 80-90 Sample size ~ 10-20 →

  4. ALMA 時代の宇宙の構造形成理論:第 1 世代から第 n 世代へ 2013 年 1 月 28 日 北海道大学 Introduction: Scatter of the Mass-Metallicity Relation • The MZ relation at z~0.1 has intrinsic scatters (Tremonti+04) • What physical parameters can explain this scatter? +2 σ ✓ SFR (Mannucci+2010), specific SFR (Ellison+2008), +1 σ half light radius (Ellison+2008), galaxy interaction (Rupke+2008) -1 σ -2 σ • The intrinsic scatter of the MZ relation at high-z is still unknown • We need large sample at high-z Tremonti+2004 Mannucci+2010 lower SFR higherSFR Intrinsic scatter deviation from best-fit Metallicity Metallicity Stellar Mass Stellar Mass

  5. ALMA 時代の宇宙の構造形成理論:第 1 世代から第 n 世代へ 2013 年 1 月 28 日 北海道大学 Introduction: Why z=1-2? • z=1-3 is dramatic and violent epoch galaxy evolution in the universe ✓ Global peak or drastic change of various quantities of galaxies ✴ Star formation rate density (global SF activity in the universe) peaked at z~2 ✴ Number density of QSO also peaked at z~2 ✴ Emergence of morphology such as Hubble sequence at z~2 ✓ This is very important phase to understand the galaxy evolution ✓ Spectroscopic nature is difficult to measure at this redshift range (redshift desert) • Emission lines such as H α , H β [NII], [OIII] enter into near-infrared wavelength region ✓ Spectroscopic observations in NIR is time-consuming ✓ Large spectroscopic observations with FMOS on Subaru Telescope Redshift z evolution of QSO number density Star Formation Rate Density z=0 z=1 z=2 z=3 z=5 Morphology of galaxies at z=1-1.5 UV Luminosity Density redshift evolution of SFRD Wolf et al. 2003 Hopkins and Beacom 2006 van Dokkum et al. 2011 Redshift

  6. ALMA 時代の宇宙の構造形成理論:第 1 世代から第 n 世代へ 2013 年 1 月 28 日 北海道大学 Introduction: FMOS on Subaru Telescope • What’s FMOS (Fibre Multi-Object Spectrograph)? ✓ Second generation instrument for Subaru Telescope ✓ Collaboration among Japan, UK, and Australia ✓ Multi-object spectrograph in NIR (0.9-1.8µm) w/ 400 fibers and FoV of 30’ Φ ✓ Low Resolution (LR; R~650) and High Resolution (HR; R~3000) mode ✓ Details are in Kimura et al. 2010, PASJ, 62 , 1135 ✓ We conduct large NIR spectroscopic surveys with FMOS FMOS on the Subaru Telescope Fiber positioner (Echidna) Optical design of FMOS

  7. ALMA 時代の宇宙の構造形成理論:第 1 世代から第 n 世代へ 2013 年 1 月 28 日 北海道大学 Sample Selection and Observations: • Target Sample ✓ Field : SXDS/UDS (effective area~0.7 deg 2 ) ✓ We constructed a K-selected catalogue ✴ z phot , M* are derived from SED fitting ✴ SFR from the rest-frame UV luminosity, E(B-V) from the rest-frame UV color ✴ Expected F(H α ) is from the SFR and E(B-V) ✴ E(B-V) for emission line is derived by using prescription by Cid Fernandes+05 ✓ 1.2<z phot <1.6, K<23.9 AB mag, M * >10 9.5 M sun , F(H α ) exp >5.0x10 -17 cgs ✓ Excluding X-ray sources (L x >10 43 erg/s) ✓ ~5000 objects in whole area of the SXDS 1e-14 10 9.5 M sun • Observations Targeted Objects ✓ Mainly FMOS/GTOs in 2010-2011 Expected H α flux (erg/s/cm 2 ) 1e-15 ✓ LR mode / Cross Beam Switch mode Expected Ha Flux (cgs) ✓ Typical exposure time is 3-4 hrs per FoV ✓ About 1200 objects are observed in total 1e-16 • Data Reduction 5x10 -17 cgs ✓ FMOS reduction pipeline FIBRE-pac 1e-17 ✓ Details are shown in Iwamuro+12 ✓ Fitting methods taking the OH mask 1.2<z phot <1.6 effects into consideration 1e-18 1e+09 1e+10 1e+11 1e+12 Stellar Mass (Msun) Stellar Mass (M sun )

  8. ALMA 時代の宇宙の構造形成理論:第 1 世代から第 n 世代へ 2013 年 1 月 28 日 北海道大学 Observed Spectra: We observed ~1200 targets in total. 5 hrs integration z=1.442 Among them, 343 objects show F(H α )=1.1x10 -16 significant H α emission (S/N>3) at F([NII])=3.8x10 -17 z=1.2-1.6 (median=1.41). This is the FWHM=390 km/s M*=4.6x10 10 M sun largest NIR spectroscopic sample at 12+log(O/H)=8.644 z>1 ever. Shaded area: OH airglow mask z=1.336 3 hrs integration F(H α )=1.5x10 -16 Solid : Observed Spectra F([NII])=3.5x10 -17 FWHM=320 km/s Dashed : Best-fit Model Spectra M*=4.0x10 9 M sun 12+log(O/H)=8.414 Initial results (GTO in 2010; 71 H α detections) are already presented by Yabe+12 (PASJ, 64, 60). In this talk, we also present results from all GTO runs.

  9. ALMA 時代の宇宙の構造形成理論:第 1 世代から第 n 世代へ 2013 年 1 月 28 日 北海道大学 Mass-Metallicity Relation at z~1.4: • Possible AGN candidates are excluded by using BPT diagram • 12+log(O/H) from [NII]/H α line ratio (N2 method; Pettini & Pagel 2004) • No significant [NII] emission (S/N<3.0) from ~70% → Stacking analysis Thick solid line: regression line (this work) The largest sample ever at z>1 Thin solid line: regression line (initial results; Yabe+12)

  10. ALMA 時代の宇宙の構造形成理論:第 1 世代から第 n 世代へ 2013 年 1 月 28 日 北海道大学 Cosmic Evolution of Mass-Metallicity Relation: • Comparison to the previous works up to z~3 ✓ Our results at z~1.4 are between those at z~0.8 and z~2.2 ✓ Anti-downsizing-like evolution from z~1.4 to z~0.8? • Evolution of the MZ relation from z~3 to z~0 ✓ Smoothly evolves from z~3 to z~0 ✓ MZ relation evolution from z~3 to z~0 at fixed stellar masses Cosmic metallicity evolution at fixed stellar mass Metallicity calibration and IMF of other works are all the same as ours

  11. ALMA 時代の宇宙の構造形成理論:第 1 世代から第 n 世代へ 2013 年 1 月 28 日 北海道大学 Comparison with Theoretical Models: • Comparison with theoretical predictions (Davé et al. 2011) ✓ N-body + SPH cosmological simulations (GADGET -2) ✓ 4 wind models (no wind; constant wind; slow wind; mass dependent wind) implemented ✴ Constant wind (cw) : dM wind /dt=2xSFR, v wind =680 km/s ✴ Mass dependent wind (vzw) : velocity dispersion (=mass) dependent wind • Our result generally agrees with cw or vzw models Cosmic metallicity evolution at fixed stellar mass Comparison with Davé+11 no wind slow wind Metallicity calibration and IMF of other works are all the same as ours

  12. ALMA 時代の宇宙の構造形成理論:第 1 世代から第 n 世代へ 2013 年 1 月 28 日 北海道大学 Intrinsic Scatter of Mass-Metallicity Relation: • We found that the MZ relation at z~1.4 has intrinsic scatters of ~0.1 dex ✓ Observational errors are subtracted from the observed scatters ✓ Well agrees with SDSS results at z~0.1 within the error bars ✓ However, note that the values should be lower limit because some metallicities are upper limit, i.e., larger scatters at higher redshift • What is the origin of this scatter? Scatter ( σ ) Thick solid line: regression line (this work) Scatter comparable to z~0 Thin solid line: regression line (initial results; Yabe+12)

  13. ALMA 時代の宇宙の構造形成理論:第 1 世代から第 n 世代へ 2013 年 1 月 28 日 北海道大学 Second Parameter Dependency: • Dependency of SFR and size on the MZ relation ✓ SFR : derived from H α luminosity corrected for the dust extinction ✓ We take half light radius (R 50 ) as galaxy size (from K-band image de-convolving PSF) ✓ Dividing the sample into two groups by the parameter ✓ The dependency of SFR on the MZ relation is not clear ✓ Galaxies with smaller R 50 tend to show higher metallicity SFR(H α ) size (R 50 )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend