new algebraic estimation techniques in signal processing
play

New Algebraic estimation techniques in signal processing Mamadou - PowerPoint PPT Presentation

New Algebraic estimation techniques in signal processing Mamadou Mboup UFR de Math ematiques et Informatique Universit e Ren e Descartes-Paris 5 Projet ALIEN, INRIA-Futurs Email: mboup@math-info.univ-paris5.fr Algebraic estimation


  1. New Algebraic estimation techniques in signal processing Mamadou Mboup UFR de Math´ ematiques et Informatique Universit´ e Ren´ e Descartes-Paris 5 Projet ALIEN, INRIA-Futurs Email: mboup@math-info.univ-paris5.fr Algebraic estimation Control Theory, Estimation and Signal Processing, M. Fliess anniversary, IHP mars 30-31, 2006.

  2. Outline General overview 1 Mathematical background 2 Applications 3 Polynomial phase signal Signal analysis and representation Introduction Derivative estimation Signal Denoising - Change points detection Concluding remarks 4 Algebraic estimation Control Theory, Estimation and Signal Processing, M. Fliess anniversary, IHP mars 30-31, 2006.

  3. A simple example - Notations and algorithm n ( t ) � �� � ae − t 2 : σ 2 unknown parameter σ 2 + γ + n 0 ( t ) y ( t ) = � �� � x ( t ) Differential equation : σ 2 ˙ x ( t ) = − tx ( t ) − tγ → σ 2 sx = x ′ + σ 2 x (0) − γ s 2 Elimination of structured perturbations: Π( · ) = d 3 ds 3 s 2 ( · ) ⇒ ( s 3 x (3) + 9 s 2 x ′′ + 18 sx ′ + 6 x ) σ 2 = s 2 x (4) + 6 sx (3) + 6 x ′′ Linear estimator: ( s 3 y (3) + 9 s 2 y ′′ + 18 sy ′ + 6 y ) � σ 2 = s 2 y (4) + 6 sy (3) + 6 y ′′ (Strictly) proper estimator: multiply both sides by s − ν , ν > 2 : � � � s ν − 3 + 9 y ′′ y (3) y ′ σ 2 = y (4) s ν − 2 + 6 y (3) s ν − 1 + 6 y ′′ y s ν − 2 + 18 s ν − 1 + 6 s ν − 1 s ν The estimator is strictly proper for ν � 4 . Algebraic estimation Control Theory, Estimation and Signal Processing, M. Fliess anniversary, IHP mars 30-31, 2006.

  4. A simple example - Notations and algorithm n ( t ) � �� � ae − t 2 : σ 2 unknown parameter σ 2 + γ + n 0 ( t ) y ( t ) = � �� � x ( t ) Differential equation : σ 2 ˙ x ( t ) = − tx ( t ) − tγ → σ 2 sx = x ′ + σ 2 x (0) − γ s 2 Elimination of structured perturbations: Π( · ) = d 3 ds 3 s 2 ( · ) ⇒ ( s 3 x (3) + 9 s 2 x ′′ + 18 sx ′ + 6 x ) σ 2 = s 2 x (4) + 6 sx (3) + 6 x ′′ Linear estimator: ( s 3 y (3) + 9 s 2 y ′′ + 18 sy ′ + 6 y ) � σ 2 = s 2 y (4) + 6 sy (3) + 6 y ′′ (Strictly) proper estimator: multiply both sides by s − ν , ν > 2 : � � � s ν − 3 + 9 y ′′ y (3) y ′ σ 2 = y (4) s ν − 2 + 6 y (3) s ν − 1 + 6 y ′′ y s ν − 2 + 18 s ν − 1 + 6 s ν − 1 s ν The estimator is strictly proper for ν � 4 . Algebraic estimation Control Theory, Estimation and Signal Processing, M. Fliess anniversary, IHP mars 30-31, 2006.

  5. A simple example - Notations and algorithm n ( t ) � �� � ae − t 2 : σ 2 unknown parameter σ 2 + γ + n 0 ( t ) y ( t ) = � �� � x ( t ) Differential equation : σ 2 ˙ x ( t ) = − tx ( t ) − tγ → σ 2 sx = x ′ + σ 2 x (0) − γ s 2 Elimination of structured perturbations: Π( · ) = d 3 ds 3 s 2 ( · ) ⇒ ( s 3 x (3) + 9 s 2 x ′′ + 18 sx ′ + 6 x ) σ 2 = s 2 x (4) + 6 sx (3) + 6 x ′′ Linear estimator: ( s 3 y (3) + 9 s 2 y ′′ + 18 sy ′ + 6 y ) � σ 2 = s 2 y (4) + 6 sy (3) + 6 y ′′ (Strictly) proper estimator: multiply both sides by s − ν , ν > 2 : � � � s ν − 3 + 9 y ′′ y (3) y ′ σ 2 = y (4) s ν − 2 + 6 y (3) s ν − 1 + 6 y ′′ y s ν − 2 + 18 s ν − 1 + 6 s ν − 1 s ν The estimator is strictly proper for ν � 4 . Algebraic estimation Control Theory, Estimation and Signal Processing, M. Fliess anniversary, IHP mars 30-31, 2006.

  6. . . . A simple example - Notations and algorithm Numerical estimate (time domain) � t { [ ν ] 2 τ 2 - 6[ ν ] 1 τ ( t - τ ) + 6( t - τ ) 2 } τ 2 ( t - τ ) ν - 3 y ( τ ) dτ � 0 σ 2 ( t ) = � t { 6( t - τ ) 3 - [ ν ] 3 τ 3 + 9[ ν ] 2 τ 2 ( t - τ ) - 18 τ ( t - τ ) 2 } ( t - τ ) ν - 4 y ( τ ) dτ 0 where [ ν ] i = � i k =1 ( ν − k ) � t � t α − 1 � t 1 y ( k ) ( − 1) k τ k y ( τ ) dτdt 1 · · · dt α − 1 s α �→ · · · 0 0 0 � t ( − 1) k ( t − τ ) α − 1 τ k y ( τ ) dτ = ( α − 1)! 0 The estimation time t may be very small ⇒ fast estimation. The noise effect is attenuated by the iterated integrals Algebraic estimation Control Theory, Estimation and Signal Processing, M. Fliess anniversary, IHP mars 30-31, 2006.

  7. . . . A simple example - Notations and algorithm y ( t ) = − 2 π 2 ( t − d ) e − 2 π 2 ( t − λ ) 2 + n ( t ) , λ : unknown parameter PPM in UWB application: y − y + 2 π 2 t 2 y = ( ˙ y + 4 π 2 ty ) λ − (2 π 2 y ) λ 2 Differential equation: t ˙ � � � λ 2 π 2 y (3) − sy ′′ − 3 y ′ = ([ sy ] ′ − 4 π 2 y ′′ ) λ − (2 π 2 y ) λ 2 � P = Q � λ 2 �� t � Integral equation: y ( t ) = − 2 π 2 ( t − λ ) y ( τ ) dτ + c 0 t + c 1 + c 2 0 ds 3 { s 3 y − 2 π 2 ( s 2 y ′ − sy ) } = { 2 π 2 d 3 d 3 λ = q ds 3 ( s 2 y ) } λ � � p Algebraic estimation Control Theory, Estimation and Signal Processing, M. Fliess anniversary, IHP mars 30-31, 2006.

  8. Simulation: SNR = 23 dB Noise correlation function 3 1.0 0.8 2 0.6 1 0.4 0 0.2 −1 0.0 −2 −0.2 −3 −0.4 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 0 10 20 30 40 50 60 70 80 90 100 110 Estimations of lambda vs time Zooming 15 0.16 λ = 0.11 0.15 ^ 10 Diff. Eq.: λ 0.14 ^ 2 Diff. eq.: sqrt( ) λ 0.13 5 0.12 Int. eq. 0.11 0 0.10 0.09 −5 0.08 0.07 −10 0.06 −0.5 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 The noise need not be white, Gaussian, etc ... ! Algebraic estimation Control Theory, Estimation and Signal Processing, M. Fliess anniversary, IHP mars 30-31, 2006.

  9. Mathematical background: Differential algebra - operational calculus Differential algebra, Commutative ring/field, equipped with a derivation � a differential ring/field, provides a powerful and elegant mean to exhibit hidden linear structures. In control theory: nonlinear inversion, flatness,... In signal processing: nonlinear inversion (equalizability). Significant breakthrough is expected Algebraic estimation Control Theory, Estimation and Signal Processing, M. Fliess anniversary, IHP mars 30-31, 2006.

  10. Some definitions Differential field extension L/K : Two differential fields K , L K ⊂ L restriction to K of the derivation of L is the derivation of K . L/K is termed differentially algebraic iff, ds , . . . , d n x ∀ x ∈ L, ∃ P, polyn over K | P ( x, dx ds n ) = 0 . Otherwise, L/K is said to be differentially transcendental . Mikusi´ nski’s field of operators: C = ( { f : [0 , + ∞ ) → C , f continuous } , + , ⋆ ) � commutative ring without zero divisors. Denote by M , the quotient field of C ; its elements { f } are called operators . Equip M with d f ds = {− tf } (algebraic derivative) � differential field of operators Algebraic estimation Control Theory, Estimation and Signal Processing, M. Fliess anniversary, IHP mars 30-31, 2006.

  11. Identifiability Let k 0 be a differential field of constants and Θ = ( θ 1 , . . . , θ r ) a set of unknown parameters . λ 1 θ 2 1 θ 2 Let k = k 0 ( Θ ) . Example: 2 ∈ k 0 ( Θ ) , λ i ∈ k 0 λ 2 + λ 3 θ 3 Let K/k ( s ) be a finitely generated differentially algebraic extension A signal is an element of K . Consider a finite collection of signals: x = ( x 1 , . . . , x κ ) The parameters Θ are linearly identifiable with respect to x if, and only if, P Θ = Q P i,j , Q j ∈ span k 0 ( s )[ d ds ] (1 , x ) , i, j = 1 , . . . , r and det( P ) � = 0 . weakly linearly identifiable with respect to x if, and only if, Θ ′ = ( θ ′ 1 , . . . , θ ′ q ′ ) are linearly identifiable, wrt x and i (resp. θ i ) is algebraic over k 0 ( Θ ) (resp. k 0 ( Θ ′ )) each θ ′ projectively linearly identifiable wrt x if, and only if, θ ǫ , . . . , θ ǫ − 1 θ ǫ , θ ǫ +1 θ 1 θ ǫ , . . . , θ r θ ǫ are linearly identifiable, for some θ ǫ � = 0 . Algebraic estimation Control Theory, Estimation and Signal Processing, M. Fliess anniversary, IHP mars 30-31, 2006.

  12. Perturbations A perturbation noise n is either structured : ⇒ ∃ Π ∈ k 0 ( s )[ d ⇐ ds ] , Π � = 0 | Π n = 0 . s ν is annihilated by Π = νs ν − 1 + s ν d Example : n = γ ds non structured : rapid oscillating (high frequency) signal, attenuated by the iterated integrals Non standard analysis description [M. Fliess] Algebraic estimation Control Theory, Estimation and Signal Processing, M. Fliess anniversary, IHP mars 30-31, 2006.

  13. Outline General overview 1 Mathematical background 2 Applications 3 Polynomial phase signal Signal analysis and representation Introduction Derivative estimation Signal Denoising - Change points detection Concluding remarks 4 Algebraic estimation Control Theory, Estimation and Signal Processing, M. Fliess anniversary, IHP mars 30-31, 2006.

  14. Polynomial phase signal Noisy chirp signal : y ( t ) = A sin ϕ ( t ) + n ( t ) , where ϕ ( t ) = ϕ 0 + ϕ 1 t + ϕ 2 t 2 , n ( t ) is the noise. Set x ( t ) = y ( t ) − n ( t ) : noise-free signal. ... ϕ ( t ) 2 ˙ D ϕ ⋆ : x ( t ) + ˙ x ( t ) + 3 ˙ ϕ ( t ) ¨ ϕ ( t ) x ( t ) = 0 which reads in the operational domain as � � 2 s d 2 1 s + s 3 ) + 4 ϕ 2 ( ϕ 2 + ϕ 1 s ) d (2 ϕ 1 ϕ 2 + ϕ 2 ds + 4 ϕ 2 x ds 2 x (0) + x (0) ϕ 2 x (0) s + x (0) s 2 = (¨ 1 ) + ˙ x ( t ) is a differentially rational signal � ϕ ( t ) 3 x ( t ) = 0 D ϕ ⋆ : ϕ ( t )¨ ˙ x ( t ) − ¨ ϕ ( t ) ˙ x ( t ) + ˙ Different estimator for different D ϕ ⋆ Algebraic estimation Control Theory, Estimation and Signal Processing, M. Fliess anniversary, IHP mars 30-31, 2006.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend