neutron star equations of state and quark hadron
play

Neutron star equations of state and quark-hadron continuity T oru - PowerPoint PPT Presentation

1/21 XQCD2019 Tokyo, June 24, 2019 Neutron star equations of state and quark-hadron continuity T oru Kojo QCD ( C entral C hina N ormal U niv.) collaborators condensed Astro G. Baym, K. Fukushima, S. Furusawa, T. Hatsuda, matter P.


  1. 1/21 XQCD2019 Tokyo, June 24, 2019 Neutron star equations of state and quark-hadron continuity T oru Kojo QCD ( C entral C hina N ormal U niv.) collaborators condensed Astro G. Baym, K. Fukushima, S. Furusawa, T. Hatsuda, matter P. Powell, Y. Song, H. Togashi, T. Takatsuka D. Hou, J. Okafor, D. Suenaga (-> poster) Refs) 1) Baym et al., Rept. Prog. Phys. 81 (2018) no.5, 056902 , a review; EoS tables QHC18&19 in CompStar website 2) A talk (plenary) in Lattice2019, Wuhan, June 24 (available online) 3) Three lectures in summer school, JINR, Dubna, 20-30 August 2019 (available online)

  2. 2/21 Overall picture based on QCD � many-quark exchange � few meson exchange � Baryons overlap � structural change � Quark Fermi sea � nucleons only � hyperons, ⊿ , ... (pQCD) ( 3-body ) [Freedman-McLerran 1976 Kurkela et al 2009] ab-initio nuclear cal. most difficult strongly correlated see e.g.) ChEFT, variational (d.o.f : quasi-particles??) (d.o.f ??) Gorda's talk not explored well Hints from NSs steady progress n B ~ 5n 0 ~ 100n 0 ~ 2n 0 (p F � 400 MeV)

  3. 3/21 Contents P QCD ( μ B ) 1, M-R Hints for "soft-stiff" EoS " given " 2, P QCD ( μ B ) H EFT Attempts to get insights 3, Summary & Prospects

  4. 4/21 EoS & M-R relation Einstein eq. : QCD EoS M max M ~2M sun (observed) 1-to-1 correspondence Lindblom (1992) R n B /n 0 M TOV & R( M TOV ) 1) non-rotating, spherical NS : TOV equation max max 2) uniformly rotating NS : e.g. Hartle-Thorne M uni ~ 1.2 M TOV (stable if rotation is slow enough) max 3) differentially rotating NS : Numerical GR max M diff ~ 1.5 M TOV (short-live; dissipation and magnetic braking → collapse)

  5. 5/21 Terminology (in this talk) M TOV stiffer 1) Stiff EoS : P is large at given ε pressure gravity ( not necessarily large c s 2 = dP/d ε ) R 2) Stiffness may strongly depend on density; define, e.g., Soft - Stiff EoS : Soft at n B < 2 n 0 & Stiff at n B > 5 n 0 more specifically, R 1.4 < ~ 13 km M > ~ 2 M sun We also use terminology such as stiff-stiff EoS, etc.

  6. 6/21 Soft-Stiff vs Stiff-Stiff EoS M TOV /M sun Ref) Lattimer & Prakash (2001) ~ 5-10n 0 Observation of Pulsars (NS) quark (?) 2.17 � 0.10 M sun [Cromartie+ (2019)] (NEW) [Antoniadis+ (2013)] 2.01 � 0.04 M sun 2.0 1.93 � 0.01 M sun [Demorest+ (2010)] hadron ~ 2-5n 0 to 1.5 quark (?) crust → loosely bound by gravity ~ 2n 0 1.0 P=0 ~10 -9 n 0 ~10 -9 n 0 ~ n 0 0.5 ~ 0.1n 0 nuclear R [km] 0 13 – 15 km 11 – 13 km ~20 km

  7. 7/21 Soft-Stiff vs Stiff-Stiff EoS M TOV /M sun Ref) Lattimer & Prakash (2001) ~ 5-10n 0 Observation of Pulsars (NS) 2.17 � 0.10 M sun [Cromartie+ (2019)] (NEW) [Antoniadis+ (2013)] 2.01 � 0.04 M sun 2.0 1.93 � 0.01 M sun [Demorest+ (2010)] ~ 2-5n 0 1.5 ~ 2n 0 very stiff ~ 2n 0 1.0 nuclear EoS 0.5 nuclear R [km] 0 13 – 15 km 11 – 13 km ~20 km

  8. 7/21 Soft-Stiff vs Stiff-Stiff EoS M TOV /M sun Ref) Lattimer & Prakash (2001) ~ 5-10n 0 Observation of Pulsars (NS) 2.17 � 0.10 M sun [Cromartie+ (2019)] (NEW) [Antoniadis+ (2013)] 2.01 � 0.04 M sun 2.0 1.93 � 0.01 M sun [Demorest+ (2010)] ~ 2-5n 0 1 st order P.T. (from very stiff to stiff phases) 1.5 ~ 2n 0 very stiff ~ 2n 0 1.0 nuclear EoS 0.5 nuclear R [km] 0 13 – 15 km 11 – 13 km ~20 km

  9. 8/21 Constraints ( before GW170817) M TOV /M sun � Thermal X-ray spectra from NS [Steiner+2015, Ozel+2015, ...] 2.0 modeling of thermo bursts systematics ? 1.5 � HIC constraints ( n B ~ 2-5 n 0 , T ? ) [Danielewicz+2002, Ko, Fuchs, Bao-An Li,...] transport models with "EoS" -> flow & particle production 1.0 systematics ? � Nuclear constraints ( n B ~ n 0 ) Theory: nuclear cal. & Lab. exp. 0.5 [e.g. Lattimer-Lim 2013 for summary] nuclear R [km] 0 13 – 15 km 11 – 13 km ~20 km

  10. 9/21 NS-NS mergers [detectability 0.1~100 /year , aLIGO/Virgo] GWs time Tidally deformed BH Early inspiral Merger M/M TOVmax > ~ 1.5 < 1 kHz 1 - 4 kHz too massive HMNS GWs GWs lifetime < 100 ms GWs 1.2 < M/M TOVmax < 1.5 < ~ 100 km ~ 1000 km short life BH EM (red) jets EM (blue) M/ M TOVmax < 1.2 SMNS Finite size effect point particles EM (red) long life (tidal deformation) � oscillation freq. (GW) ~ 1 – 3 kHz R 1,2 Λ obs M 1 & M 2 M eject , R � EM signals (sGRB & kilonova) spins (?) R 1 & R 2 � life-time of merger M TOV max

  11. 10/21 Constraints ( after GW170817 - GRB170817A - AT2017gfo) M TOV /M sun Too stiff → Too long life time for post merger [ Metziger+, Shibata+, Bauswein+, Rezzola+...] ~ 2.25 No evidence of 2.0 prompt collapse Too compact Too much tidal deformation 1.5 → too little ejecta tidal: Λ obs (1.4) < 800 (90%CL) ( spin? ) [aLIGO2018, De+2018,..] [ EM signals, Radice+2018 ] R 1.4 = 11.9 � 1.4 km [Abbott+ PRL2018, updated] 1.0 10 – 11 km A single event !! More (~100) will come next 10 years 0.5 Hints for soft - stiff EoS !! nuclear R [km] 0 13 – 15 km 11 – 13 km ~20 km

  12. 11/21 stiff-soft vs stiff-stiff vs soft-stiff [More sophisticated analyses, Han-Alford-Prakash 2013, Bedaque-Steiner 2015] P c s 2 = dP/d ε (sound speed) 2 soft c 2 causality 1/3 stiff 1 st order P.T. ε ε (very strong)

  13. 11/21 stiff-soft vs stiff-stiff vs soft-stiff [More sophisticated analyses, Han-Alford-Prakash 2013, Bedaque-Steiner 2015] P c s 2 = dP/d ε (sound speed) 2 stiff c 2 causality M > 2 M sun 1/3 stiff 1 st order P.T. ε ε (strong)

  14. 11/21 stiff-soft vs stiff-stiff vs soft-stiff [More sophisticated analyses, Han-Alford-Prakash 2013, Bedaque-Steiner 2015] P c s 2 = dP/d ε (sound speed) 2 stiff c 2 tension!! causality M > 2 M sun 1/3 2 < c 2 c s R < 13 km 2 > c 2 c s ε ε soft or weak 1 st order for 2-5n 0 soft - stiff EoS → crossover " Hadron - quark continuity " ( a new baseline ? ) [Schafer-Wilczek 1998, Hatsuda+ 2006, ...; cf) quarkyonic; McLerran-Pisarski 2007]

  15. 12/21 Speed of sound : finite T vs low T crossover Their characters are different : 1/3 1 Tew+2018 dip � speed of sound QGP � thermal vs quantum P .T. 1/3 HRG � the nature of gluons ~3-5n 0 Microphysics interpretation McLerran & Reddy, PRL(2019) ? c s 2 = 0 Baym+ 2019 ?

  16. 13/21 " given " 2, P QCD ( μ B ) H EFT Attempts to get insights

  17. 14/21 3-window modeling [Masuda+2012, TK+2014, ....] P pQCD n B ~ 5 n 0 Extrapolated EoS quark model ( 1+1+1-flavor ) n B = 2 n 0 nuclear μ B [Akmal+1998, T ogashi+2017, Hebeler+2017, Gandolfi+, ...]

  18. 14/21 3-window modeling [Masuda+2012, TK+2014, ....] P pQCD n B ~ 5 n 0 Extrapolated EoS quark model potentially ( 1+1+1-flavor ) misleading n B = 2 n 0 ? nuclear μ B [Akmal+1998, T ogashi+2017, Hebeler+2017, Gandolfi+, ...]

  19. 15/21 3-window modeling [Masuda+2012, TK+2014, ....] P pQCD n B ~ 5 n 0 quark model boundary conditions ( 1+1+1-flavor ) n B = 2 n 0 nuclear μ B [Akmal+1998, T ogashi+2017, Hebeler+2017, Gandolfi+, ...]

  20. 15/21 3-window modeling [Masuda+2012, TK+2014, ....] P pQCD n B ~ 5 n 0 quark model boundary conditions ( 1+1+1-flavor ) n B = 2 n 0 interpolation � baseline: smooth curve (6 th order polynomials) nuclear � option: put a small kink μ B [Akmal+1998, T ogashi+2017, Hebeler+2017, Gandolfi+, ...]

  21. 15/21 3-window modeling [Masuda+2012, TK+2014, ....] P typically, M > 2 M sun allowed band ~ 10-20 % of total (for a given nuclear EoS) c s 2 < 1 (everywhere) n B = 2 n 0 interpolation � baseline: smooth curve (6 th order polynomials) nuclear � option: put a small kink μ B [Akmal+1998, T ogashi+2017, Hebeler+2017, Gandolfi+, ...]

  22. 15/21 3-window modeling [Masuda+2012, TK+2014, ....] P typically, M > 2 M sun allowed band ~ 10-20 % of total (for a given nuclear EoS) Non-pert. insights to be c s 2 < 1 (everywhere) mapped out n B = 2 n 0 interpolation � baseline: smooth curve (6 th order polynomials) nuclear � option: put a small kink μ B [Akmal+1998, T ogashi+2017, Hebeler+2017, Gandolfi+, ...]

  23. 16/21 A quark model for n B > ~ 5 n 0 A guide : Hadron-Quark continuity : eff. Hamiltonian continuously evolves from hadron physics " adiabatic continuity " (Anderson) " 3-window " [Manohar-Georgi 1983, Weinberg 2010,...] Q < ~0.2 GeV ~2 GeV < Q 0.2 GeV < Q < 1-2 GeV short range very long-range (> 1fm) constituent quarks + OGE (quasi-particles) chiral SB & color- mag . int. confinement pQCD & baryon-baryon . int. A template) chiral color-mag. nB-nB int. solve within MF + color- & charge- neutrality + β -equilibrium (to be derived from color-mag. int. : attempts -> Song+2019) [Masuda+2015, TK+2014, Blaschke+....]

  24. 17/21 Color-magnetic int. is a key player Δ (1232) cf) 1) Coupling ∝ velocity ~ p/E 3M q + ... more important in relativistic regime & high density N (938) 2) Pairing : strongly channel dependent s B u R hadron mass ordering: N- Δ , etc. [ DeRujula+ (1975), Isgur-Karl (1978), ...] color-super-conductivity [Alford, Wilczek, Rajagopal, Schafer,... 1998-] lighter quark mass 3) Baryon-Baryon int. : short-range correlation [Oka-Yazaki (1980),...] ( Pauli + color-mag . ) channel dep. → non-universal hard core (some are attractive!) mass dep. → stronger hard core in relativistic quarks → consistent with the lattice QCD [HAL-collaboration]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend