neutrino models at colliders
play

Neutrino Models at Colliders Bhupal Dev Washington University in - PowerPoint PPT Presentation

Neutrino Models at Colliders Bhupal Dev Washington University in St. Louis SUSY2019 Corpus Christi May 22, 2019 Harbinger of New Physics Non-zero neutrino mass = physics beyond the Standard Model 2 Harbinger of New Physics Non-zero


  1. Neutrino Models at Colliders Bhupal Dev Washington University in St. Louis SUSY2019 Corpus Christi May 22, 2019

  2. Harbinger of New Physics Non-zero neutrino mass = ⇒ physics beyond the Standard Model 2

  3. Harbinger of New Physics Non-zero neutrino mass = ⇒ physics beyond the Standard Model neutrinos d s b u c t e µ τ meV eV keV MeV GeV TeV Perhaps something beyond the standard Higgs mechanism... 2

  4. Harbinger of New Physics Non-zero neutrino mass = ⇒ physics beyond the Standard Model neutrinos d s b u c t e µ τ meV eV keV MeV GeV TeV Perhaps something beyond the standard Higgs mechanism... Can we probe the origin of neutrino mass at colliders? 2

  5. Neutrino Mass Models [see Tuesday plenary talk by S. King] From pheno point of view, can broadly categorize into Tree-level (seesaw) vs loop-level (radiative) Minimal (SM gauge group) vs gauge-extended [e.g. U (1) B − L , Left-Right] Non-supersymmetric vs Supersymmetric 3

  6. Neutrino Mass Models [see Tuesday plenary talk by S. King] From pheno point of view, can broadly categorize into Tree-level (seesaw) vs loop-level (radiative) Minimal (SM gauge group) vs gauge-extended [e.g. U (1) B − L , Left-Right] Non-supersymmetric vs Supersymmetric New fermions, gauge bosons, and/or scalars – messengers of neutrino mass physics . Rich phenomenology. For messenger scale � O ( few TeV ), accessible at the LHC and/or future colliders. Connection to other puzzles (e.g. baryogenesis, dark matter). 3

  7. New Fermions (aka sterile neutrinos/heavy neutrinos/heavy neutral leptons) 4

  8. Type-I Seesaw [Minkowski (PLB ’77); Mohapatra, Senjanovi´ c (PRL ’80); Yanagida ’79; Gell-Mann, Ramond, Slansky ’79; Glashow ’80] Introduce SM-singlet Majorana fermions ( N ). −L ⊃ Y ν L φ c N + 1 c N + H . c . 2 M N N After EWSB, m ν ≃ − M D M − 1 N M T D , where M D = vY ν . [Figure from Antusch, Cazzato, Fischer (IJMPA ’17)] Y top Neutrino Yukawa coupling y n 2 =D m atm 2 m n GUT 10 - 3 L EW 2 =D m sol 2 m n Y e 10 - 7 10 - 9 10 - 11 reactor & LSND anomaly eV keV GeV PeV ZeV M GUT M Pl Sterile neutrino mass scale 5

  9. Type-I Seesaw [Minkowski (PLB ’77); Mohapatra, Senjanovi´ c (PRL ’80); Yanagida ’79; Gell-Mann, Ramond, Slansky ’79; Glashow ’80] Introduce SM-singlet Majorana fermions ( N ). −L ⊃ Y ν L φ c N + 1 c N + H . c . 2 M N N After EWSB, m ν ≃ − M D M − 1 N M T D , where M D = vY ν . [Figure from Antusch, Cazzato, Fischer (IJMPA ’17)] Y top Neutrino Yukawa coupling y n 2 =D m atm 2 m n GUT 10 - 3 L EW 2 =D m sol 2 m n Y e 10 - 7 10 - 9 10 - 11 reactor & LSND anomaly eV keV GeV PeV ZeV M GUT M Pl Sterile neutrino mass scale Naturalness of Higgs mass suggests M N � 10 7 GeV. [Vissani (PRD ’98); Clarke, Foot, Volkas (PRD ’15); Bambhaniya, BD, Goswami, Khan, Rodejohann (PRD ’17)] 5

  10. Heavy Majorana Neutrinos at the LHC [Keung, Senjanovi´ c (PRL ’83); Datta, Guchait, Pilaftsis (PRD ’94); Panella, Cannoni, Carimalo, Srivastava (PRD ’02); Han, Zhang (PRL ’06); del Aguila, Aguilar-Saavedra, Pittau (JHEP ’07); Atre, Han, Pascoli, Zhang (JHEP ’09)] Same-sign dilepton plus jets (without / E T ) q W ' q q' N V N W + + V N + q -1 35.9 fb (13 TeV) 1 Mixing CMS Preliminary 95% CL upper limit 1 10 − − 2 10 2 3 Observed V 10 − eN 2 Observed V µ N − 4 10 * 2 V V eN N µ Observed 2 2 V + V eN N µ 5 10 − 2 3 10 10 m (GeV) [CMS PAS EXO-17-028] N Probes (sub) TeV-scale heavy Majorana neutrinos with ‘large’ active-sterile mixing. 6

  11. Low-scale Seesaw with Large Mixing Naively, active-sterile neutrino mixing is small for EW-scale seesaw: � � m ν 100 GeV V ℓ N ≃ M D M − 1 � 10 − 6 ≃ N M N M N ‘Large’ mixing effects possible with special structures of M D and M N . [Pilaftsis (ZPC ’92); Gluza (APPB ’02); de Gouvea ’07; Kersten, Smirnov (PRD ’07); Gavela, Hambye, Hernandez, Hernandez (JHEP ’09); Ibarra, Molinaro, Petcov (JHEP ’10); Adhikari, Raychaudhuri (PRD ’11); Mitra, Senjanovi´ c, Vissani (NPB ’12); BD, Lee, Mohapatra (PRD ’13);...] 7

  12. Low-scale Seesaw with Large Mixing Naively, active-sterile neutrino mixing is small for EW-scale seesaw: � � m ν 100 GeV V ℓ N ≃ M D M − 1 � 10 − 6 ≃ N M N M N ‘Large’ mixing effects possible with special structures of M D and M N . [Pilaftsis (ZPC ’92); Gluza (APPB ’02); de Gouvea ’07; Kersten, Smirnov (PRD ’07); Gavela, Hambye, Hernandez, Hernandez (JHEP ’09); Ibarra, Molinaro, Petcov (JHEP ’10); Adhikari, Raychaudhuri (PRD ’11); Mitra, Senjanovi´ c, Vissani (NPB ’12); BD, Lee, Mohapatra (PRD ’13);...] One example: [Kersten, Smirnov (PRD ’07)]     m 1 δ 1 ǫ 1 0 M 1 0 with ǫ i , δ i ≪ m i . M D = m 2 δ 2 ǫ 2 and M N = M 1 0 0     m 3 δ 3 ǫ 3 0 0 M 2 7

  13. Low-scale Seesaw with Large Mixing Naively, active-sterile neutrino mixing is small for EW-scale seesaw: � � m ν 100 GeV V ℓ N ≃ M D M − 1 � 10 − 6 ≃ N M N M N ‘Large’ mixing effects possible with special structures of M D and M N . [Pilaftsis (ZPC ’92); Gluza (APPB ’02); de Gouvea ’07; Kersten, Smirnov (PRD ’07); Gavela, Hambye, Hernandez, Hernandez (JHEP ’09); Ibarra, Molinaro, Petcov (JHEP ’10); Adhikari, Raychaudhuri (PRD ’11); Mitra, Senjanovi´ c, Vissani (NPB ’12); BD, Lee, Mohapatra (PRD ’13);...] One example: [Kersten, Smirnov (PRD ’07)]     m 1 δ 1 ǫ 1 0 M 1 0 with ǫ i , δ i ≪ m i . M D = m 2 δ 2 ǫ 2 and M N = M 1 0 0     m 3 δ 3 ǫ 3 0 0 M 2 But the steriles with large mixing are ‘quasi-Dirac’ with suppressed LNV. Generic requirement in order to satisfy neutrino oscillation data and 0 νββ constraints. [Abada, Biggio, Bonnet, Gavela, Hambye (JHEP ’07); Ibarra, Molinaro, Petcov (JHEP ’10); Fernandez-Martinez, Hernandez-Garcia, Lopez-Pavon, Lucente (JHEP ’15); Drewes, Garbrecht, Gueter, Klaric (JHEP ’16)] Should also look for lepton number conserving channels at the LHC. 7

  14. Inverse Seesaw Provides a (technically) natural low-scale seesaw framework. Two sets of SM-singlet fermions with opposite lepton numbers. [Mohapatra, Valle (PRD ’86)] Y ν L φ c N + M N SN + 1 2 µ S SS c + H . c . −L Y ⊃ ( M D M − 1 N ) µ S ( M D M − 1 N ) T m ν ≃ Naturally allows for large mixing: � � m ν 1 keV ≈ 10 − 2 V ℓ N ≃ µ S µ S 8

  15. Inverse Seesaw Provides a (technically) natural low-scale seesaw framework. Two sets of SM-singlet fermions with opposite lepton numbers. [Mohapatra, Valle (PRD ’86)] Y ν L φ c N + M N SN + 1 2 µ S SS c + H . c . −L Y ⊃ ( M D M − 1 N ) µ S ( M D M − 1 N ) T m ν ≃ Naturally allows for large mixing: � � m ν 1 keV ≈ 10 − 2 V ℓ N ≃ µ S µ S But again quasi-Dirac heavy neutrinos. Should look for both lepton number conserving and violating channels at the LHC. Ratio of same-sign to opposite-sign dilepton signal could test the Majorana vs. Dirac nature. [Gluza, Jelinski (PLB ’15); BD, Mohapatra (PRL ’15); Gluza, Jelinski, Szafron (PRD ’16); Anamiati, Hirsch, Nardi (JHEP ’16); Das, BD, Mohapatra (PRD ’17)] 8

  16. Heavy (Pseudo) Dirac Neutrinos at the LHC [del Aguila, Aguilar-Saavedra (PLB ’09; NPB ’09); Chen, BD (PRD ’12); Das, Okada (PRD ’13); Das, BD, Okada (PLB ’14); Izaguirre, Shuve (PRD ’15); Dib, Kim (PRD ’15); Dib, Kim, Wang (PRD ’17; CPC ’17); Dube, Gadkari, Thalapillil (PRD ’17)] Trilepton plus / E T q l + W + l − N q ′ ¯ W + l + ν -1 -1 35.9 fb (13 TeV) 35.9 fb (13 TeV) 1 1 2 2 | | eN 95% CL upper limits N 95% CL upper limits CMS CMS µ |V |V Expected Expected − 1 − 1 10 10 ± 2 std. deviation ± 2 std. deviation ± 1 std. deviation ± 1 std. deviation 2 2 10 − 10 − Observed Observed Observed, Observed, − 3 − 3 10 10 prompt N prompt N DELPHI prompt DELPHI prompt decays decays DELPHI long-lived DELPHI long-lived − 4 − 4 10 10 L3 CMS 8 TeV ATLAS CMS 8 TeV ATLAS 5 5 − − 10 10 3 3 2 2 1 10 10 10 1 10 10 10 m (GeV) m (GeV) N N 2 2 [CMS Collaboration, Phys. Rev. Lett. 120 , 221801 (2018)] 9

  17. Importance of VBF for Heavy Neutrino Production [BD, Pilaftsis, Yang (PRL ’14); Alva, Han, Ruiz (JHEP ’15); Degrande, Mattelaer, Ruiz, Turner (PRD ’16); Das, Okada (PRD ’16)] [fb] ± N l - NLO 4 10 N - NLO ν 2  N ± l N l +1j - NLO V 3 10  ± X) / N l j - VBF NLO 2 N +0,1j - GF LO 10 ν N → 10 (pp 14 TeV LHC σ 1 200 400 600 800 1000 1.4 LO 1.2 σ 1 / 0.8 NLO 200 400 600 800 1000 σ Heavy Neutrino Mass, m [GeV] [Cai, Han, Li, Ruiz (Front. in Phys. ’18)] N 10

  18. Higgs Decay [BD, Franceschini, Mohapatra (PRD ’12); Cely, Ibarra, Molinaro, Petcov (PLB ’13)] ¯ ν ν ¯ h h ` + N ` + N W + Z ` − ν ` − ν � h < 13 MeV � h < 13 MeV 0.100 0.100 � h < 1.1 � SM � h < 1.1 � SM ( 100 TeV ) 0.001 h decay 0.001 h decay W decay ( 14 TeV ) 10 - 5 10 - 5 W decay V ) 2 4 T e 2 ( 1 0 ��� | V eN | V � N 10 - 7 10 - 7 ( 100 TeV ) 10 - 9 10 - 9 FCC - ee FCC - ee 10 - 11 10 - 11 50 100 150 200 50 100 150 200 M N ( GeV ) M N ( GeV ) � h < 13 MeV 0.100 � h < 1.1 � SM * V � N | 0.001 h decay | V eN 10 - 5 ( 14 TeV ) MEG 2 ( 100 TeV ) 10 - 7 50 100 150 200 [Das, BD, Kim (PRD ’17)] M N ( GeV ) 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend