neutrino mass models
play

Neutrino Mass Models Mu-Chun Chen, University of California, Irvine - PowerPoint PPT Presentation

Neutrino Mass Models Mu-Chun Chen, University of California, Irvine NuFact 2015, CBPF , Rio de Janeiro, Brazil, August 10, 2015 Theoretical Challenges (i) Absolute mass scale: Why m << m u,d,e ? seesaw mechanism: most appealing


  1. Neutrino Mass Models Mu-Chun Chen, University of California, Irvine NuFact 2015, CBPF , Rio de Janeiro, Brazil, August 10, 2015

  2. Theoretical Challenges (i) Absolute mass scale: Why m ν << m u,d,e ? • seesaw mechanism: most appealing scenario ⇒ Majorana • GUT scale (type-I, II) vs TeV scale (type-III, double seesaw) • TeV scale new physics (SUSY, extra dimension, U(1)´) ⇒ Dirac or Majorana (ii) Flavor Structure: Why neutrino mixing large while quark mixing small? • neutrino anarchy: no parametrically small number Hall, Murayama, Weiner (2000); de Gouvea, Murayama (2003) • near degenerate spectrum, large mixing • still alive and kicking de Gouvea, Murayama (2012) Buchmüller, Hamaguchi, Lebedev, Ramos-Sánchez, Ratz (2007); • possible heterotic string connection Feldstein, Klemm (2012) • family symmetry: there’s a structure, expansion parameter (symmetry e ff ect) • mixing result from dynamics of underlying symmetry • for leptons only (normal or inverted) • for quarks and leptons: quark-lepton connection ↔ GUT (normal) • Alternative? • In this talk: assume 3 generations, no LSND/MiniBoone/Reactor Anomaly 2

  3. Origin of Mass Hierarchy and Mixing • In the SM: 22 physical quantities which seem unrelated • Question arises whether these quantities can be related • No fundamental reason can be found in the framework of SM • less ambitious aim ⇒ reduce the # of parameters by imposing symmetries • Grand Unified Gauge Symmetry • seesaw mechanism naturally implemented • GUT relates quarks and leptons: quarks & leptons in same GUT multiplets • one set of Yukawa coupling for a given GUT multiplet ⇒ intra-family relations • Family Symmetry • relate Yukawa couplings of di ff erent families • inter-family relations ⇒ further reduce the number of parameters ⇒ Experimentally testable correlations among physical observables 3

  4. Origin of Flavor Mixing and Mass Hierarchy • Several models have been constructed based on t t t u u c c u c GUT Symmetry SU(10) • GUT Symmetry [SU(5), SO(10)] ⊕ Family Symmetry G F d s d d s s b b b SU(5), SO(10), ... • Family Symmetries G F based on continuous groups: e e µ µ µ " " " e ! ! µ ! ! e ! ! • U(1) ! ! ! " e µ µ e " " • SU(2) SU(2) F family symmetry • SU(3) (T ′ , SU(2), ...) • Recently, models based on discrete family symmetry groups have been constructed • A 4 (tetrahedron) • T´ (double tetrahedron) Motivation: Tri-bimaximal • S 3 (equilateral triangle) (TBM) neutrino mixing • S 4 (octahedron, cube) • A 5 (icosahedron, dodecahedron) • ∆ 27 • Q 4 4

  5. Tri-bimaximal Neutrino Mixing Latest Global Fit (3 σ ) sin 2 θ 23 = 0 . 437 (0 . 374 − 0 . 626) Capozzi, Fogli, Lisi, Marrone, Montanino, Palazzo (2014) • Latest Global Fit (3 σ ) sin 2 θ 12 = 0 . 308 (0 . 259 − 0 . 359) sin 2 θ 13 = 0 . 0234 (0 . 0176 − 0 . 0295) • Tri-bimaximal Mixing Pattern Harrison, Perkins, Scott (1999) ⇤ ts sin 2 θ atm , TBM = 1 / 2 an ts sin 2 θ ⇥ , TBM = 1 / 3 ⌥ d sin θ 13 , TBM = 0. • Leading Order: TBM (from symmetry) + higher order corrections/contributions • Is TBM a good starting point? 5 m

  6. ⇒ SU(5) Compatibility ⇒ T ′ Family Symmetry M.-C.C, K.T. Mahanthappa (2007, 2009) • Double Tetrahedral Group T´: double covering of A4 • Symmetries ⇒ 10 parameters in Yukawa sector ⇒ 22 physical G F e.g. A 4 observables • neutrino mixing angles from group theory (CG coe ffi cients) � Φ e � � Φ ν � • TBM: misalignment of symmetry breaking patterns • neutrino sector: T ′ → G TST2 , G e G ν • charged lepton sector: T ′ → G T • GUT symmetry ⇒ contributions to mixing parameters from charged lepton neutrino sector sector charged lepton sector e.g. Z 3 e.g. Z 2 subgroup of A 4 subgroup of A 4 ⇒ deviation from TBM related to Cabibbo angle θ c � Φ ν � ∝ (1,1,1) � Φ e � ∝ (1,0,0) ⇧ CG’s of ⌅ 13 ⌅ ⌅ c / 3 2 δ ⋍ 227 o tan 2 θ ⇤ ⌃ tan 2 θ ⇤ ,T BM + 1 SU(5) & T´ 2 θ c cos δ • large θ 13 possible with one additional singlet flavon M.-C. C., J. Huang, K.T. Mahanthappa, A. Wijiangco (2013) 6

  7. Neutrinoless Double Beta Decay 1 Current Bound or Positive Indication our model prediction 10 − 1 sum rule among masses • ⇒ small predicted region IS Cosmological Limit |m ββ | [eV] 10 − 2 NS 10 − 3 1 σ 2 σ [P 3 σ [Plot taken from C. Giunti, LIONeutrino2012] 10 − 4 10 − 4 10 − 3 10 − 2 10 − 1 1 m min [eV] 7

  8. ⇒ “Large” Deviations from TBM in A 4 • Generically: corrections on the order of ( θ c ) 2 • from charged lepton sector: • through GUT relations • from neutrino sector: • higher order contributions in superpotential • Modifying the Neutrino sector: Di ff erent symmetry breaking patterns G F • TBM: misalignment of e.g. A 4 M.-C.C, J. Huang, J. O’Bryan, A. Wijangco, F. Yu, (2012) • A4 → G TST2 and A4 → G T � Φ e � � Φ ν � • A4: group of order 12 ⇒ many subgroups G e G ν • systematic study of breaking into other A4 subgroups charged lepton neutrino sector sector e.g. Z 3 e.g. Z 2 subgroup of A 4 subgroup of A 4 � Φ ν � ∝ (1,1,1) � Φ e � ∝ (1,0,0) 8

  9. “Large” Deviations from TBM in A 4 M.-C.C, J. Huang, J. O’Bryan, A. Wijangco, F. Yu, (2012) • Di ff erent A4 breaking patterns: normal inverted non-maximal θ 23 ➩ normal hierarchy deviations correlated mass ordering ➩ symmetry breaking patterns 9

  10. “Large” Deviations from TBM in A 4 M.-C.C, J. Huang, J. O’Bryan, A. Wijangco, F. Yu, (2012) • Correlation between Dirac CP phase and θ 13 : correlations ⇕ symmetry breaking pattern 10

  11. Another Example: A 5 P . Ballett, S. Pascoli, J. Turner (2015) • Correlations among di ff erent mixing parameters G e θ 12 θ 23 sin α ji δ 90 � 35 . 27 � + 10 . 13 � r 2 45 � Z 3 0 270 � 0 � 45 � ± 25 . 04 � r 0 31 . 72 � + 8 . 85 � r 2 180 � Z 5 90 � 45 � 0 270 � 0 � Z 2 × Z 2 36 . 00 � − 34 . 78 � r 2 31 . 72 � + 55 . 76 � r 0 180 � 0 � 58 . 28 � − 55 . 76 � r 0 180 � TABLE I. Numerical predictions for the correlations found √ in this paper. The dimensionless parameter r ≡ 2 sin θ 13 is constrained by global data to lie in the interval 0 . 19 . r . 0 . 22 at 3 σ . The predictions for θ 12 and θ 23 shown here ne- 11 � r 4 � � r 2 � glect terms of order O and O , respectively. Following

  12. Corrections to Kinetic Terms • Corrections to the kinetic terms induced by family symmetry breaking generically are present, should be properly included Leurer, Nir, Seiberg (1993); Dudas, Pokorski, Savoy (1995); Dreiner, Thomeier (2003) • can be along di ff erent directions than RG corrections • dominate over RG corrections (no loop suppression, copious heavy states) • only subdominant for quark flavor models • sizable for neutrino mass models based on discrete family symmetries, e.g. A 4 • Contributions from Flavon VEVs (1,0,0) and (1,1,1) M.-C.C, M. Fallbacher, M. Ratz, C. Staudt (2012) • five independent “basis” matrices                 0 0 0 0 1 1 1 0 0 0 0 0   0 i − i  ,  ,  , P II = 0 1 0 P III = 0 0 0 P IV = 1 0 1 P I = 0 0 0 P V = − i 0 i        0 0 0 1 1 0 i − i 0 0 0 1 0 0 0         • RG correction: essentially along P III = diag(0,0,1) direction due to y τ dominance • kinetic term corrections can be along di ff erent directions than RG: P I - P V • nontrivial flavor structure can be induced • non-zero CP phase can be induced 12

  13. An Example: Enhanced θ 13 in A 4 M.-C.C., M. Fallbacher, M. Ratz, C. Staudt (2012) 8 P V 6 Correction to TBM prediction of θ 13 = 0 ∆ θ 13 [ ◦ ] 4 δ ≃ π /2 κ V v 2 / Λ 2 = (0 . 2) 2 2 ∆ θ 13 an. ∆ θ 13 num. 0 0.00 0.02 0.04 0.06 0.08 0.10 m 1 [eV] 13

  14. Corresponding Change in θ 12 M.-C.C., M. Fallbacher, M. Ratz, C. Staudt (2012) 0.4 P V 0.3 Correction to TBM ∆ θ 12 [ ◦ ] prediction of θ 12 = 35.3º 0.2 0.1 κ V v 2 / Λ 2 = (0 . 2) 2 0.0 0.00 0.02 0.04 0.06 0.08 0.10 m 1 [eV] 14

  15. Corresponding Change in θ 23 M.-C.C., M. Fallbacher, M. Ratz, C. Staudt (2012) � 1.4 0.4 P V � 1.6 0.3 Correction to TBM � 1.8 prediction of θ 23 = 45º ∆ θ 23 [ ◦ ] � 2.0 0.2 � 2.2 0.1 � 2.4 κ V v 2 / Λ 2 = (0 . 2) 2 � 2.6 0.0 0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 0.06 0.08 0.10 m 1 [eV] 15

  16. Origin of CP Violation • CP violation ⇔ complex mass matrices CP U R,i ( M u ) ij Q L,j + Q L,j ( M † u ) ji U R,i → Q L,j ( M u ) ij U R,i + U R,i ( M u ) ∗ ij Q L,j − • Conventionally, CPV arises in two ways: • Explicit CP violation: complex Yukawa coupling constants Y • Spontaneous CP violation: complex scalar VEVs <h> • Complex CG coe ffi cients in certain discrete groups ⇒ explicit CP violation • CPV in quark and lepton sectors purely from complex CG coe ffi cients CG coe ffi cients in non-Abelian discrete symmetries ➪ relative strengths and phases in entries of Yukawa matrices ➪ mixing angles and phases (and mass hierarchy) 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend