network security games
play

Network Security Games Saurabh Amin Massachusetts Institute of - PowerPoint PPT Presentation

Network Security Games Saurabh Amin Massachusetts Institute of Technology ACCESS-FORCES CPS workshop KTH, October 26-27, 2015 Amin (MIT) FORCES October 26, 2015 1 / 46 FORCES National Science Foundation (NSF) sponsored CPS Frontiers


  1. Network Security Games Saurabh Amin Massachusetts Institute of Technology ACCESS-FORCES CPS workshop KTH, October 26-27, 2015 Amin (MIT) FORCES October 26, 2015 1 / 46

  2. FORCES National Science Foundation (NSF) sponsored CPS Frontiers project Claire*Tomlin* Dawn*Song* Galina*Schwartz* Alexandre*Bayen* Ian*Hiskens* Asuman*Ozdaglar* Threat'' Incen%ve'' assessment'&' theory' diagnos%cs' Xenofon*Koutsoukos* Shankar*Sastry* Robust' Inter4' Networked' dependent'' control' risks' System'–' Hamsa*Balakrishnan* Mechanism' Security' design' co4design' Demosthenis*Teneketzis* Gabor*Karsai* Saurabh*Amin* Janos*SzBpanovits* Collaborative Research: MIT, UC Berkeley, UMich, Vanderbilt University Amin (MIT) FORCES October 26, 2015 2 / 46

  3. FORCES motivation: Resilient CPS Attributes Functional correctness by design 1 Robustness to reliability failures 2 (faults) Survivability against security failures 3 (attacks) Tools [Traditionally disjoint] ◮ Resilient Control (RC) over sensor-actuator networks ◮ Economic Incentives (EI) to influence strategic interaction of individuals within systemic societal institutions Cyber-Physical Systems (CPS) Amin (MIT) FORCES October 26, 2015 3 / 46

  4. Reliability failures Local disruptions to cascading failures (blackouts) weather events ⇒ limited situational awareness ⇒ inadequate operator response ⇒ network failures Amin (MIT) FORCES October 26, 2015 4 / 46

  5. Security failures: cyber-attacks & Stuxnet Los Angeles traffic control (2008) Maroochy Shire sewage plant (2000) Tehama Colusa canal system (2007) Cal-ISO system computers (2007) Amin (MIT) FORCES October 26, 2015 5 / 46

  6. Failures in CPS ◮ Simultaneous faults [ reliability failures ] ◮ Common-mode failures ◮ Random failures due to nature ◮ Operator errors ◮ Simultaneous attacks [ security failures ] ◮ Targeted cyber-attacks ◮ Non-targeted cyber-attacks ◮ Coordinated physical attacks ◮ Cascading failures ◮ Failure of nodes in one subnet ⇒ progressive failures in other subnets Observation #1: Due to cyber-physical interactions, it is extremely difficult to distinguish reliability & security failures using imperfect diagnostic information. Amin (MIT) FORCES October 26, 2015 6 / 46

  7. Operations and control of CPS ◮ Multi-agent systems (e.g., infrastructure control systems with multiple entities) ◮ Agents have different information about CPS (both private and public uncertainties) ◮ Agents are strategic and have different objectives ◮ Need to coordinate or influence the agents’ strategies so as to maximize the CPS’ utility to its users Observation #2: Asymmetric information and strategic behavior are key features of CPS. Amin (MIT) FORCES October 26, 2015 7 / 46

  8. Robust Control (RC) and Economic Incentives (EI) Separation of RC and EI is not suited for CPS resilience RC tools Reliability and Security Risk Management ◮ Threat assessment & detection Internet ◮ Fault-tolerant networked control Diagnosis, Response, and Reconfiguration ◮ Real-time / predictive response Control Network ◮ Fundamental limits of defenses Detection and Regulation EI tools Sensor Actuator Network ◮ Incentive theory for resilience Electric Power Buildings Physical Infrastructures ◮ Mechanisms to align individually optimal allocations with socially Water & Gas Transportation optimum ones Attacks Defenses Faults ◮ Interdependent risk assessment Amin (MIT) FORCES October 26, 2015 8 / 46

  9. FORCES research plan: hierarchical approach Upper layer ������������ ◮ How the collection of CPS’s agents deal ������������ with external strategic adversary(-ies) ◮ Network games that model both security ������������ Middle failures and reliability failures ������������������� Middle layer ������� ◮ How strategic agents contribute to CPS efficiency and safety, while protecting ����������� their conflicting individual objectives ������������ ���������� ◮ Joint stochastic control and ������������ incentive-theoretic design, coupled with the outcome of the upper layer game ������������ ������������ ������������ Lower layer Lower layer Lower layer Local Control ������������ ������������ Control Theory ������������������� ◮ Control at each individual agent’s site. ������� ������������ ������������ Amin (MIT) FORCES October 26, 2015 9 / 46 ����������� ������������������� ������������������� ���������� ������� ������� ����������� ����������� ���������� ����������

  10. This talk : Upper hierarchical layer ������������ Game with security failures ������������ ������������ Middle ������������������� ������� ����������� ������������ ���������� Game played on a graph representing the ������������ topological structure of CPS ◮ Attacker: Strategic adversary ������������ ������������ ������������ Lower layer ◮ Defender: CPS network designer Lower layer Local Control ������������ ������������ Control Theory ������������������� ������� Amin (MIT) FORCES October 26, 2015 10 / 46 ������������ ������������ ����������� ������������������� ������������������� ���������� ������� ������� ����������� ����������� ���������� ����������

  11. Related work Control of networks ◮ S. Low, N. Li, J. Lavaei: Distributed control and optimization ◮ F. Bullo, F. Dörfler: Distributed control, oscillations, microgrids ◮ P. Khargonekar, K. Poolla, P. Varaiya: Selling random wind ◮ K. Turitsyn, I. Hiskens: Distributed optimal VAR control Resilience and security of networked systems ◮ H. Sandberg, K. Johansson: Secure control, networked control ◮ R. Baldick, K. Wood, D. Bienstock: Network Interdiction, Cascades ◮ T. Başar, C. Langbort: Network security games ◮ J. Baras: Network security games and trust Amin (MIT) FORCES October 26, 2015 11 / 46

  12. Outline: Network security games (upper layer) Distribution network control under node disruptions 1 Network flow routing under link disruptions 2 Devendra Shelar Mathieu Dahan Amin (MIT) FORCES October 26, 2015 12 / 46

  13. Model of DER disruptions ◮ Hack substation communications Vulnerability(-ies) published by EPRI ◮ Introduce incorrect set-points and disrupt DERs Generation Transmission lines ◮ Create supply-demand mismatch ◮ Cause voltage & freq. violations ◮ Induce cascading failures Substation Distribution lines Control Central Typical communication New communication requirenments Amin (MIT) FORCES October 26, 2015 13 / 46

  14. Main questions When malicious entities (or random failures) compromise DERs/PVs: ◮ How to perform security threat assessment of distribution networks under DER/PV disruptions? ◮ How to design decentralized defender (network operator) strategies? Nodes with PVs sg d � � Control sg Substation Critical Nodes Center sg a � 0 13 1 4 12 11 5 2 10 3 6 7 8 19 18 17 16 14 9 20 21 15 25 26 22 23 28 24 27 29 28 35 35 31 32 33 34 36 Amin (MIT) FORCES October 26, 2015 14 / 46

  15. Attacker-defender interaction Stackelberg game model (bilevel optimization) ◮ Leader: Attacker compromises a subset of DERs/PVs; ◮ Follower: Defender response via network control. Problem statement: ◮ Determine worse-case attack plan (compromise DERs/PVs) to induce: ◮ loss of voltage regulation ◮ loss due to load shedding ◮ loss of frequency regulation [esp., for large PV installations] ◮ Best defender response (reactive control): ◮ Non-compromised DERs provide active and reactive power (VAR) ◮ Load control: demand at consumption nodes may be partly satisfied Amin (MIT) FORCES October 26, 2015 15 / 46

  16. Network model Tree networks ◮ G = ( N , E ) - tree network of nodes and edges ◮ ν i = | V i | 2 - square of voltage magnitude at node i ◮ ℓ ij = | I ij | 2 - square of current magnitude from node i to j ◮ z ij = r ij + j x ij - impedance on line ( i , j ) ◮ P ij , Q ij - real and reactive power from node i to node j ◮ S ij = P ij + j Q ij - complex power flowing on line ( i , j ) ∈ E V 0 V i V j V y P y , Q y P 01 , Q 01 P ij , Q ij P ik , Q ik V k V l V z Amin (MIT) FORCES October 26, 2015 16 / 46

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend