narrow width approximation accuracy
play

Narrow-width approximation accuracy Nikolas Kauer in collaboration - PowerPoint PPT Presentation

Narrow-width approximation accuracy Nikolas Kauer in collaboration with D. Berdine, D. Rainwater and C.F . Uhlemann funded by Particle Theory Seminar Paul Scherrer Institut May 29, 2008 1 / 29 Outline Introduction Accuracy


  1. Narrow-width approximation accuracy Nikolas Kauer in collaboration with D. Berdine, D. Rainwater and C.F . Uhlemann funded by Particle Theory Seminar Paul Scherrer Institut May 29, 2008 1 / 29

  2. Outline • Introduction • Accuracy • Limitations • Improvements • Conclusions 2 / 29

  3. Search for the Higgs boson and BSM physics L W + L W + ◮ Unitarity-violating processes, e.g. W − L → W − L ◮ Consistent mass generation via SSB → Higgs mechanism ◮ SUSY, composite Higgs, extra dimensions, ... LHC at CERN: a powerful Terascale collider ◮ pp collisions at E CMS = 14 TeV ◮ Luminosity L = 10–100 fb − 1 /year Introduction 3 / 29

  4. BSM physics via supersymmetry? SUSY: invariance under boson ↔ fermion transformation Particle spectrum of the Minimal Supersymmetric Standard Model (MSSM): fermions S = 1 Higgs S = 0 gauge bosons S = 1 2 ` u L ´ ` ν eL ´ ` H 0 ´ ` H + ´ , gluon, W ± , Z , γ d , d L e L u H 0 H − u d u R , d R , e R sfermions S = 0 Higgsinos S = 1 gauginos S = 1 ` e ´ ` e ´ 2 u L 2 ν eL , ` e ´ ` e ´ H 0 e H + d L e e L gluino, f W ± , e d , u Z , e γ e H 0 e H − u R , e u e d R , e d e R M X � = M e X ⇒ SUSY broken Introduction 4 / 29

  5. Unstable particles and QFT “Ordinary” QFT: unstable particle fields → asymptotic states ( t = ±∞ ) Eliminate these states → Hilbert space of stable particle states Theory still unitary, causal and renormalizable Veltman (1963) [No discussion of gauge invariance!] Introduction 5 / 29

  6. Unstable particles and perturbation theory LO propagators for massive gauge bosons and fermions: “ ” W − i g µν − p µ p ν i ( p / + M ) = , t t t t + t t + p 2 − M 2 p 2 − M 2 M 2 b W W Fixed-order propagator: real pole at p 2 = M 2 t t + : : : b b „ « n ∞ X i i i p 2 ≈ M 2 t : Im Π t ≈ − M t Γ t ( − i Π t ) = / − M t p / − M t p / − M t − Π t p n =0 Breit-Wigner propagator: [analytic continuation to resonant region] ! 2 i ( p / + M t ) g 2 1 − M 2 Im Π t = − 1 W (2 M 2 W + p 2 ) p p 2 − M 2 /P L t + iM t Γ t M 2 p 2 64 π W Dyson-resummed propagator: complex pole at p 2 = M 2 − iM Γ [gauge invariance?] ◮ Physical fixed-order amplitudes with unstable particles include contributions from all orders in perturbation theory Introduction 6 / 29

  7. g g g � � b b g � e � � e t � W � � � e t � � � e W t t + � + + + t � t W W � � � � g g b b g ( b ) ( a ) g g � � b b g g g � b � b g � e � � e t � W Generic resonant enhancement g � � e t � � b � � � e W e t t � � � � + � e W e � b W + + + t t W � W + � � + � e t � � W + � W + � � b � � g g g t b b b � � b g b ( a ) ( b ) ( c ) ( d ) g g � b � � � b g b g b g g � � � b e e e � � g g W W � � � � � � � � � e W e e e b W b b + + + � � � e + � ; Z � Σ � t + H W + + W + � W W b � � � � � � t p a g b p 1 � � b g g b b g b p 2 p R ( e ) ( f ) ( c ) ( d ) p 3 � � b b g g p b p 5 p 4 � � ������ � e e 2 p R � � g g W W � � � � e e b b Z ∞ + + dp 2 ( p 2 − M 2 ) 2 + ( M Γ) 2 ∼ M � ; Z � � H M 2 + + W Generic resonant enhancement: W � � � � Γ −∞ g g b b Γ /M � 1% → nonresonant contribution typically negligible ( e ) ( f ) Theoretically consistent method to extract dominant resonant contribution? Introduction 7 / 29

  8. Resonant production and decay factorization ◮ Off-shell MC generators with complete |M| 2 at tree level � use WHIZARD, MADEVENT, SHERPA, ... (but: often requires too much CPU time) ◮ Precise LHC/ILC predictions: need N n LO calculations, n ≥ 1 ◮ (S)particle decay chains → many-particle final states ◮ Already 4,5,6-leg one-/two-loop calculations tech. very demanding Narrow-width approximation (NWA) to the rescue Sub- and nonresonant/nonfactorizable contributions can be neglected in a theoretically consistent way (gauge inv., ...) 1 π M Γ · δ ( p 2 − M 2 ) D ( p 2 ) ≡ Γ → 0 : ∼ on-shell ( p 2 − M 2 ) 2 + ( M Γ) 2 Scales occurring in D ( p 2 ) → error estimate O (Γ /M ) Branching ratio measurement implies NWA (and spin averaging): BR X ≡ Γ X = σ NWA σ X ≈ P Γ σ p X σ X Introduction 8 / 29

  9. NWA accuracy: what to compare to? Tree-level finite-width schemes [safe → agreement up to O ((Γ /M ) 2 ) ] Running-width scheme (Dyson-resummed propagator) 1 / ( p 2 − M 2 ) → 1 / ( p 2 − M 2 + ip 2 Γ /M ) not gauge invariant, typically unsafe Fixed-width scheme (FWS) 1 / ( p 2 − M 2 ) → 1 / ( p 2 − M 2 + iM Γ) not gauge invariant, typically safe Overall-factor scheme M Γ=0 · ( p 2 − M 2 ) / ( p 2 − M 2 + iM Γ) gauge invariant, unsafe for complex resonance structure Baur, Vermaseren, Zeppenfeld (1992) Complex-mass scheme √ M 2 − iM Γ M → ⇒ complex cos θ W , y t gauge invariant, no known practical problems Lopez Castro, Lucio, Pestieau (1991); Denner, Dittmaier, Roth, Wackeroth (1999) Accuracy 9 / 29

  10. Complex-mass scheme at one-loop level Denner, Dittmaier, Roth, Wieders (2005) For each unstable particle: → complex renormalized mass real bare mass + complex counterterm | {z } | {z } → free propagator (resummed) → CT vertex (not resummed) ◮ Gauge invariance relations fulfilled order by order ◮ No double counting ◮ 1-loop integrals with complex internal masses required ◮ Potential unitarity violations are of higher order Applications: radiative corrections to ◮ e + e − ( → W + W − ) → 4 fermions Denner, Dittmaier, Roth, Wieders (2005) ◮ H → W + W − /ZZ → 4 fermions Bredenstein, Denner, Dittmaier, M. Weber (2006-7) q ) 2 → ( q/ ¯ ◮ ( q/ ¯ q ) 2 H Ciccolini, Denner, Dittmaier (2008) Accuracy 10 / 29

  11. Unstable-particle effective field theory Chapovsky, Vy. Khoze, Signer, Stirling (2002) Beneke, Chapovsky, Signer, Zanderighi (2004) Γ ≪ M → hierarchy of scales → Expand cross section in powers of α and δ ≡ ( p 2 − M 2 ) /M 2 ∼ Γ /M 1. Integrate out hard momenta k ∼ M in underlying theory: underlying theory → effective theory with short-distance matching coefficients 2. Identify remaining dynamical modes (corresponding to momentum configurations near mass shell) → field operators → effective Lagrangian 3. Match coefficients (up to a certain order in α and δ ) to underlying theory by calculating and comparing on-shell n -point functions ◮ Gauge invariance, resummation of self-energy insertions � ◮ Systematic extension to higher orders � , no double counting ◮ Well suited for inclusive calculations close to threshold ◮ Not well suited for fully differential calculations ◮ Underlying theory results with “ Γ → 0 ” required for matching Corrections to e + e − → u ¯ dµ − ¯ ν µ at WW threshold Beneke, Falgari, Schwinn, Signer, Zanderighi (2008) Accuracy 11 / 29

  12. Limitations of the O (Γ /M ) uncertainty estimate Relative deviation R ≡ σ FWS /σ NWA − 1 = R (1) + O (Γ 2 ) for scalar process: m d m p m d m p M, Γ M M ( " R (1) = M ( s − m 2 d ) 2 ln − 1 + [ πM ( m 2 d − M 2 )( s − M 2 )( s + m 2 p )( s − M 2 + m 2 p )] m 2 d s ( s − M 2 + m 2 p ) s π ( m 2 d − M 2 )( s − M 2 ) m 2 d ) „ « “ ” 3 ` ´ s − m 2 d + m 2 M 2 − m 2 p · Γ + ( s + m 2 p ) m 2 s + m 2 − 2 M 2 s + M 4 − M 4 m 2 d + M 4 m 2 p ( s − m 2 d + m 2 p ) ln 5 s ln d p p s − M 2 m 2 p Note: additional scales ( √ s , particle masses in production or decay, . . . ) Not { . . . } ≈ 1 /M when √ s → M (production threshold � ) or m d → M Limitations 12 / 29

  13. Scalar process 10 2 √ s m d m p M 1.1 M, Γ 1.01 0.01 0.1 1 1 − m d /M Contour lines (dashed, solid, dot-dashed) for R/ (Γ /M ) ∈ {− 10 , − 3 , − 1 , 0 , 1 , 3 , 10 } with Γ /M = 1% and m p = 0 . 02 M Dash length increases with magnitude Limitations 13 / 29

  14. √ ˆ s Scalar process with distributed Constant PDFs � ˆ � s max s max ) ∝ 1 s ) · ln s � σ � σ [ NWA ] ( � ˆ d ˆ s σ [ NWA ] (ˆ R ≡ − 1 and s s ˆ � σ NWA 0 20 17.5 15 12.5 � R 10 Γ 7.5 M 5 2.5 0 0 0.5 1 1.5 2 2.5 3 � s max /M ˆ Cross sections � σ NWA (dotted) and � σ (dashed) and relative deviation � R/ (Γ /M ) for m d = 0 . 1 M (solid) [and m d = 0 . 001 M (dot-dashed)], √ s = 3 M , Γ = 0 . 02 M , m p = 0 . 01 M Limitations 14 / 29

  15. 20 15 10 � R 5 Γ M 0 � 5 � 10 1 1.5 2 2.5 3 � s max /M ˆ As before, but with m d = 0 . 9 M . Limitations 15 / 29

  16. Nonscalar process 10 2 √ s m d m p M 1.1 M, Γ 1.01 0.01 0.1 1 1 − m d /M Contour lines (dashed, solid, dot-dashed) for R/ (Γ /M ) ∈ {− 10 , − 3 , − 1 , 0 , 1 , 3 , 10 , 30 , 100 , 300 } with Γ /M = 1% and m p = 0 . 02 M Dash length increases with magnitude Limitations 16 / 29

  17. √ s ˆ Nonscalar process with distributed Constant PDFs 100 80 60 � R 40 Γ M 20 1 1.5 2 3 5 7 10 � � 20 s max /M ˆ � R/ (Γ /M ) for m d = 0 . 95 M (solid) and m d = 0 . 9 M (dashed), √ s = 10 M , Γ = 0 . 02 M , m p = 0 . 01 M Limitations 17 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend