my main messages
play

My main messages The N formalism covers all scalar-field cases - PowerPoint PPT Presentation

Aspects of the N formalism David H. Lyth Particle Theory and Cosmology Group Physics Department Lancaster University Cambridge2006 p.1/18 My main messages The N formalism covers all scalar-field cases Slow-roll inf., k -inf.,


  1. Aspects of the δN formalism David H. Lyth Particle Theory and Cosmology Group Physics Department Lancaster University Cambridge2006 – p.1/18

  2. My main messages • The δN formalism covers all scalar-field cases • Slow-roll inf., k -inf., ghost inf., ( R 2 gravity etc. ??) Cambridge2006 – p.2/18

  3. My main messages • The δN formalism covers all scalar-field cases • Slow-roll inf., k -inf., ghost inf., ( R 2 gravity etc. ??) • User-friendly formulas for spectral index, non-gaussianity • Cf. spectral tilt: n − 1 = 2 η − 6 ǫ ( Liddle/DHL 1992 ) Cambridge2006 – p.2/18

  4. My main messages • The δN formalism covers all scalar-field cases • Slow-roll inf., k -inf., ghost inf., ( R 2 gravity etc. ??) • User-friendly formulas for spectral index, non-gaussianity • Cf. spectral tilt: n − 1 = 2 η − 6 ǫ ( Liddle/DHL 1992 ) • Trispectrum, even higher correlators, could be as important as the bispectrum Cambridge2006 – p.2/18

  5. My main messages • The δN formalism covers all scalar-field cases • Slow-roll inf., k -inf., ghost inf., ( R 2 gravity etc. ??) • User-friendly formulas for spectral index, non-gaussianity • Cf. spectral tilt: n − 1 = 2 η − 6 ǫ ( Liddle/DHL 1992 ) • Trispectrum, even higher correlators, could be as important as the bispectrum • Need to specify box size L (infrared cutoff) • But parameters run with L Cambridge2006 – p.2/18

  6. The correlators Spectrum P , bispectrum † f NL , trispectrum †† τ NL : (2 π ) 3 δ ( k + k ′ ) K 1 P � ζ k ζ k ′ � = 5 (2 π ) 3 δ ( k + k ′ + k ′′ ) K 2 P 2 f NL 3 � ζ k ζ k ′ ζ k ′′ � = (2 π ) 3 δ ( k + k ′ + k ′′ + k ′′′ ) K 3 P 3 τ NL � ζ k ζ k ′ ζ k ′′ ζ k ′′′ � c = Cambridge2006 – p.3/18

  7. The correlators Spectrum P , bispectrum † f NL , trispectrum †† τ NL : (2 π ) 3 δ ( k + k ′ ) K 1 P � ζ k ζ k ′ � = 5 (2 π ) 3 δ ( k + k ′ + k ′′ ) K 2 P 2 f NL 3 � ζ k ζ k ′ ζ k ′′ � = (2 π ) 3 δ ( k + k ′ + k ′′ + k ′′′ ) K 3 P 3 τ NL � ζ k ζ k ′ ζ k ′′ ζ k ′′′ � c = where the kinematic factors depend on the wave-vectors: 2 π 2 /k 3 K 1 ≡ K 1 ( k ) K 1 ( k ′ ) + 5perms K 2 ≡ K 2 K 1 ( | k + k ′′ | ) + 23perms K 3 ≡ † Komatsu/Spergel 2000; Maldacena 2003 †† Boubekeur/DHL 2005 Cambridge2006 – p.3/18

  8. Observation • P = (5 × 10 − 5 ) 2 (WMAP + SDSS) Cambridge2006 – p.4/18

  9. Observation • P = (5 × 10 − 5 ) 2 (WMAP + SDSS) • n − 1 = − 0 . 035 ± 0 . 012 (WMAP + · · · ) ( n − 1 ≡ d P /d ln k ) Cambridge2006 – p.4/18

  10. Observation • P = (5 × 10 − 5 ) 2 (WMAP + SDSS) • n − 1 = − 0 . 035 ± 0 . 012 (WMAP + · · · ) ( n − 1 ≡ d P /d ln k ) • − 54 < f NL < 114 ≪ P − 1 / 2 (WMAP + SDSS) Cambridge2006 – p.4/18

  11. Observation • P = (5 × 10 − 5 ) 2 (WMAP + SDSS) • n − 1 = − 0 . 035 ± 0 . 012 (WMAP + · · · ) ( n − 1 ≡ d P /d ln k ) • − 54 < f NL < 114 ≪ P − 1 / 2 (WMAP + SDSS) ∼ 10 4 ≪ P − 1 (WMAP) • τ NL < Cambridge2006 – p.4/18

  12. Observation • P = (5 × 10 − 5 ) 2 (WMAP + SDSS) • n − 1 = − 0 . 035 ± 0 . 012 (WMAP + · · · ) ( n − 1 ≡ d P /d ln k ) • − 54 < f NL < 114 ≪ P − 1 / 2 (WMAP + SDSS) ∼ 10 4 ≪ P − 1 (WMAP) • τ NL < • From last two, ζ is almost gaussian. Cambridge2006 – p.4/18

  13. Observation • P = (5 × 10 − 5 ) 2 (WMAP + SDSS) • n − 1 = − 0 . 035 ± 0 . 012 (WMAP + · · · ) ( n − 1 ≡ d P /d ln k ) • − 54 < f NL < 114 ≪ P − 1 / 2 (WMAP + SDSS) ∼ 10 4 ≪ P − 1 (WMAP) • τ NL < • From last two, ζ is almost gaussian. • Observation eventually will give (absent detection) | f NL | < ∼ 1 and | τ NL | < ∼ 300 Cambridge2006 – p.4/18

  14. Observation • P = (5 × 10 − 5 ) 2 (WMAP + SDSS) • n − 1 = − 0 . 035 ± 0 . 012 (WMAP + · · · ) ( n − 1 ≡ d P /d ln k ) • − 54 < f NL < 114 ≪ P − 1 / 2 (WMAP + SDSS) ∼ 10 4 ≪ P − 1 (WMAP) • τ NL < • From last two, ζ is almost gaussian. • Observation eventually will give (absent detection) | f NL | < ∼ 1 and | τ NL | < ∼ 300 • Or | f NL | < ∼ 0 . 01 (Coory 06) ?? Cambridge2006 – p.4/18

  15. Observation • P = (5 × 10 − 5 ) 2 (WMAP + SDSS) • n − 1 = − 0 . 035 ± 0 . 012 (WMAP + · · · ) ( n − 1 ≡ d P /d ln k ) • − 54 < f NL < 114 ≪ P − 1 / 2 (WMAP + SDSS) ∼ 10 4 ≪ P − 1 (WMAP) • τ NL < • From last two, ζ is almost gaussian. • Observation eventually will give (absent detection) | f NL | < ∼ 1 and | τ NL | < ∼ 300 • Or | f NL | < ∼ 0 . 01 (Coory 06) ?? Cambridge2006 – p.4/18

  16. The δN formula • Choose comoving x but generic t Cambridge2006 – p.5/18

  17. The δN formula • Choose comoving x but generic t • Write g ij = a 2 ( x , t ) γ ij ( x , t ) with || γ || = 1 • So a ( x , t ) is local scale factor. Cambridge2006 – p.5/18

  18. The δN formula • Choose comoving x but generic t • Write g ij = a 2 ( x , t ) γ ij ( x , t ) with || γ || = 1 • So a ( x , t ) is local scale factor. • At t 1 choose a ( x , t 1 ) = a ( t 1 ) (‘flat’ slice) Cambridge2006 – p.5/18

  19. The δN formula • Choose comoving x but generic t • Write g ij = a 2 ( x , t ) γ ij ( x , t ) with || γ || = 1 • So a ( x , t ) is local scale factor. • At t 1 choose a ( x , t 1 ) = a ( t 1 ) (‘flat’ slice) • At t choose δρ = 0 (uniform density slice) • And write a ( x , t ) = a ( t ) e ζ ( x ,t ) Cambridge2006 – p.5/18

  20. The δN formula • Choose comoving x but generic t • Write g ij = a 2 ( x , t ) γ ij ( x , t ) with || γ || = 1 • So a ( x , t ) is local scale factor. • At t 1 choose a ( x , t 1 ) = a ( t 1 ) (‘flat’ slice) • At t choose δρ = 0 (uniform density slice) • And write a ( x , t ) = a ( t ) e ζ ( x ,t ) • Then ζ ( x , t ) = δN where Cambridge2006 – p.5/18

  21. The δN formula • Choose comoving x but generic t • Write g ij = a 2 ( x , t ) γ ij ( x , t ) with || γ || = 1 • So a ( x , t ) is local scale factor. • At t 1 choose a ( x , t 1 ) = a ( t 1 ) (‘flat’ slice) • At t choose δρ = 0 (uniform density slice) • And write a ( x , t ) = a ( t ) e ζ ( x ,t ) • Then ζ ( x , t ) = δN where � t d ln a ( x , t ) N = dt dt t 1 Salopek & Bond 1990; DHL, Malik & Sasaki 2005 (non-perturbative refs.) Cambridge2006 – p.5/18

  22. The family of unperturbed universes • Use (inverse) smoothing scale k ≪ aH Cambridge2006 – p.6/18

  23. The family of unperturbed universes • Use (inverse) smoothing scale k ≪ aH • Invoke separate universe assumption • Local evolution is that of an unperturbed universe • Zeroth order gradient expansion plus local isotropy Cambridge2006 – p.6/18

  24. The family of unperturbed universes • Use (inverse) smoothing scale k ≪ aH • Invoke separate universe assumption • Local evolution is that of an unperturbed universe • Zeroth order gradient expansion plus local isotropy • Assume some light fields φ i ( x , t 1 ) define subsequent expansion N ( x , t ) • Choose c s a 1 H 1 /k ∼ a few, so that that δφ i is classical Cambridge2006 – p.6/18

  25. The family of unperturbed universes • Use (inverse) smoothing scale k ≪ aH • Invoke separate universe assumption • Local evolution is that of an unperturbed universe • Zeroth order gradient expansion plus local isotropy • Assume some light fields φ i ( x , t 1 ) define subsequent expansion N ( x , t ) • Choose c s a 1 H 1 /k ∼ a few, so that that δφ i is classical • Then N ( x , t ) = N ( φ i ( x ) , ρ ( t )) the expansion of a family of unperturbed universes DHL, Malik & Sasaki 2005 (non-perturbative) Cambridge2006 – p.6/18

  26. The standard scenario • Light fields φ i = { φ, σ i } • φ is the inflaton • σ i (if they exist) are Goldstone Bosons, no potential Cambridge2006 – p.7/18

  27. The standard scenario • Light fields φ i = { φ, σ i } • φ is the inflaton • σ i (if they exist) are Goldstone Bosons, no potential • Everything determined by φ • identical separate universes • constant ζ Cambridge2006 – p.7/18

  28. The standard scenario • Light fields φ i = { φ, σ i } • φ is the inflaton • σ i (if they exist) are Goldstone Bosons, no potential • Everything determined by φ • identical separate universes • constant ζ ∂ 2 N ζ = ∂N ∂φ δφ + 1 ∂φ 2 ( δφ ) 2 + · · · 2 Cambridge2006 – p.7/18

  29. The standard scenario • Light fields φ i = { φ, σ i } • φ is the inflaton • σ i (if they exist) are Goldstone Bosons, no potential • Everything determined by φ • identical separate universes • constant ζ ∂ 2 N ζ = ∂N ∂φ δφ + 1 ∂φ 2 ( δφ ) 2 + · · · 2 • Slow-roll, GR ⇒ P δφ = ( H/ 2 π ) 2 and ∂N/∂φ = V/V ′ • First term of ζ dominates � 2 1 � H ∗ P ( k ) = 2 ǫ ∗ 2 π n − 1 = 2 η ∗ − 6 ǫ ∗ Cambridge2006 – p.7/18

  30. Non-gaussianity in the standard scenario • In the δN approach, non-gaussianity from • non-linearity of ζ in terms of δφ • non-gaussianity of δφ Cambridge2006 – p.8/18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend