multiwavelength studies of hess j1825 137 of the ism next
play

Multiwavelength studies of HESS J1825-137 of the ISM next to HESS - PowerPoint PPT Presentation

Multiwavelength studies of HESS J1825-137 of the ISM next to HESS J1825137 and preliminary results from other TeV source Nanten meeting 2015 F. Voisin Overall: HESS J1825-137 and HESS J1826-130 TeV source powered by 140 -12.80 Nanten


  1. Multiwavelength studies of HESS J1825-137 of the ISM next to HESS J1825–137 and preliminary results from other TeV source Nanten meeting 2015 F. Voisin

  2. Overall: HESS J1825-137 and HESS J1826-130 ◮ TeV source powered by 140 -12.80 Nanten PSR J1826-1334 DEC HESS J1826-130 P2 HESS -13.00 ◮ Spin down power 120 -13.20 HESSJ1825-137 E SN =2.8 × 10 36 erg.s − 1 , ˙ -13.40 P1 100 -13.60 pulsar period 101 ms and -13.80 80 d ∼ 4 . 0 ± 0 . 1 kpc -14.00 -14.20 ◮ τ = ˙ P 2 P indicates a pulsar 60 -14.40 characteristic age of τ ∼ -14.60 LS 5039 40 RA 20 kyr 18.480 18.460 18.440 18.420 18.400 18.380 18.360 18.340 ◮ Pulsar J1826-1256 Spin Excess count map of HESS J1825-137 from HESS. down power P1: PSR J1826-1334 E SN =4.9 × 10 36 erg.s − 1 , ˙ P2: PSR J1826-1256. (Aharonian et al 2006) pulsar period ∼ 100 ms and τ ∼ 14kyr (Abdo et al 2009)

  3. ◮ Covers ∼ 1 degree of the galactic plane ◮ Asymmetry in the γ -ray morphology due to the interaction between the progenitor SNR and the northern dense molecular cloud ◮ Energy dependent morphology is suggesting a leptonic scenario (Aharonian et al 2006) HESS J1825-137 Energy morphology ◮ What is the origin of map Red - Total flux below 0.8 TeV HESSJ1826-130 to the Green - Total flux bewteen 0.8-2.5 TeV north? Blue - Total flux above 2.5 TeV(De Jager and Djannati ata¨ ı 2008)

  4. Motivations ◮ Determine the nature of the HESS J1826-130 emission north to HESS J1825-137:Hadronic or Leptonic? ◮ γ -ray emission over HESS J1826-130 overlaps with a giant molecular cloud first observed by Lemi` ere et al (2004) .Origins from progenitor SNR, PWN? ◮ Pulsar hadronic wind theoretically expected and indirect evidence seen (wisp structures) (e.g. Hoshino et al 1992, Gallant et al 1994, Gaensler et al 2002 ) ◮ TeV hadronic emission possible from PWN (e.g. Amato et al 2003 and 2013, Horns et al 2007) ◮ Progenitor SNR as particle accelerator?

  5. Nanten CO(1-0) 160 Mopra CS(1-0) 4 -12.4 CR4 Nanten CO(1-0) 150 -12.8 Mopra CS(1-0) -12.6 K km/s CR4 140 -12.9 -12.8 3.5 P2 130 -13.0 -13.0 CR2 HESS J1825-137 CR2 CR3 P2 -13.2 CR5 120 Declination -13.1 CR1 Declination CR3 3 -13.4 110 P1 -13.2 CR1 -13.6 CR5 100 -13.3 -13.8 CR6 2.5 90 -14.0 -13.4 80 -14.2 HESS J1825-137 -13.5 2 P1 -14.4 70 18.46 18.45 18.44 18.43 18.42 18.41 18.48 18.46 18.44 18.42 18.40 18.38 18.36 60 Right ascension Right ascension GRS 13CO(1-0) 20 Mopra NH3(1,1) -12.4 NR4 3 HESS J1825-137 HESS J1825-137 HESS J1825-137 HESS J1825-137 HESS J1825-137 HESS J1825-137 GRS 13CO(1-0) -12.8 Mopra NH3(1,1) 18 -12.6 CR4 K km/s -12.9 -12.8 2.5 16 P2 -13.0 -13.0 CR2 CR3 P2 NR2 -13.2 Declination CR5 14 -13.1 CR1 Declination -13.4 2 P1 -13.2 NR3 -13.6 12 NR5 CR6 -13.3 -13.8 1.5 10 -14.0 -13.4 NR1 -14.2 HESS J1825-137 8 -13.5 P1 1 -14.4 18.48 18.46 18.44 18.42 18.40 18.38 18.36 18.46 18.45 18.44 18.43 18.42 18.41 6 Right ascension Right ascension Integrated intensity map between v lsr :40-60 km/s , kinematic distance:3.6-4.3 kpc CR:Regions where CS(1-0), 13 CO(1-0),CO(1-0) are observed. NR:Regions where NH 3 are also observed.

  6. P1 CR1/NR1 CR2/NR2 Antenna Temperature T A (K) Antenna Temperature T A (K) 20.0 NH 3 (1,1) NH 3 (1,1) CO(1-0) CO(1-0) 0.4 15.0 0.10 10.0 10.0 0.2 5.0 5.0 0.00 0.0 0.0 0.0 0.2 2.0 13 CO(1-0) 2.0 13 CO(1-0) NH 3 (2,2) NH 3 (2,2) 0.05 0.1 1.0 1.0 0.00 0.0 0.0 0.0 0.6 0.3 0.08 CS(1-0) NH 3 (3,3) 0.02 CS(1-0) NH 3 (3,3) 0.4 0.2 0.04 0.1 0.00 0.2 0.00 0.0 0.0 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 V LSR (km/s) V LSR (km/s) V LSR (km/s) V LSR (km/s) CR3/NR3 CR4/NR4 Antenna Temperature T A (K) Antenna Temperature T A (K) NH 3 (1,1) 0.2 NH 3 (1,1) CO(1-0) CO(1-0) 0.08 10.0 10.0 0.1 0.04 5.0 5.0 0.0 0.00 0.0 0.0 0.2 13 CO(1-0) 2.0 13 CO(1-0) 3.0 NH 3 (2,2) NH 3 (2,2) 0.04 2.0 0.1 0.02 1.0 1.0 0.0 0.00 0.0 0.0 0.8 0.04 CS(1-0) NH 3 (3,3) 0.08 CS(1-0) NH 3 (3,3) 0.2 0.02 0.4 0.04 0.1 0.00 0.00 0.0 0.0 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 V LSR (km/s) V LSR (km/s) V LSR (km/s) V LSR (km/s) CR6/NR6 CR5/NR5 Antenna Temperature T A (K) Antenna Temperature T A (K) 10.0 NH 3 (1,1) 0.08 NH 3 (1,1) 0.02 CO(1-0) CO(1-0) 6.0 0.04 4.0 0.00 5.0 2.0 0.00 0.0 0.0 1.5 1.5 13 CO(1-0) 13 CO(1-0) 0.02 NH 3 (2,2) NH 3 (2,2) 0.05 1.0 1.0 0.00 0.5 0.00 0.5 0.0 0.0 0.3 0.02 CS(1-0) NH 3 (3,3) CS(1-0) NH 3 (3,3) 0.04 0.1 0.2 0.02 0.00 0.1 0.00 0.0 0.0 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80 V LSR (km/s) V LSR (km/s) V LSR (km/s) V LSR (km/s)

  7. Region CR1 in detail Integrated intensity in K (km/s) in CR1 DEC NH3(1,1) 40-60 km/s C7 -13.15 CS(1-0) between 40-60 km/s CS (1-0) 40-60 km/s NH 3 (1,1) between 40-60 km/s H62alpha 45-65 km/s C3 H62 α between 45-65 km/s CR1 CR1 -13.20 C2 UC HII g018.15-0.29 C6 -13.25 C4 C1 C9 -13.30 C5 C8 -13.35 P1 RA 18.427 18.420 18.413 -13.40 ◮ Overall H 2 mass using X CO =2.0 × 10 20 cm − 2 (K km/s) − 1 ∼ 1 × 10 5 M ⊙ with an average of ∼ 10 2 cm − 3 ◮ The CS and NH 3 estimation of H 2 Mass reveals ∼ 10 4 M ⊙ , corresponding with the H 2 mass estimated by Roman-Duval (2010). ◮ Some spatial separation between CS and NH 3

  8. CR1 Dynamic studies CR1 CR1 CS(1-0) integrated intensity CS(1-0)x4 13 CO(1-0) -13.20 4.0 1 2 3 4 5 6 map. Box Averaged spectra 3.0 2.0 overlaying the map. The -13.22 1.0 13CO(1-0) 0.0 white dashed ellipse 4.0 7 8 9 10 11 12 3.0 indicates CR1. -13.24 2.0 1.0 DEC CS(1-0) 0.0 4.0 13 14 15 16 17 18 -13.26 Broad CS (1-0) and 3.0 Antenna Temperature T A (K) 2.0 13 CO(1-0) emission (e.g 1.0 0.0 -13.28 box 21). 4.0 19 20 21 22 23 24 3.0 2.0 45-50 km/s 1.0 -13.30 0.0 50-55km/s Emission varies greatly, 4.0 25 26 27 28 29 30 3.0 55-60km/s changing from a single peak 2.0 -13.32 1.0 at v lsr ∼ 50 km/s (center of 0.0 4.0 31 32 33 34 35 36 CR1) to double peak at 3.0 -13.34 2.0 ∼ 46-54 km/s (e.g box 34 1.0 0.0 and 23) r g b37 4.0 38 39 40 41 42 -13.36 3.0 2.0 P1 1.0 0.0 RA 45 50 55 60 45 50 55 60 45 50 55 60 45 50 55 60 45 50 55 60 45 50 55 60 18.426 18.424 18.422 18.420 18.418 18.416 18.414 V LSR (km/s)

  9. Spitzer CR1 indicates perturbation either coming from: -12.60 DEC → SNR Spitzer 5.8 micro CR4 Spitzer 8 micro → PWN -12.80 Spitzer 24 micro → Shock from stars in the star-forming region ( e.g -13.00 UCHII 18.15 -0.29 box 17 ) CR2 P2 adding perturbations in its CR3 vicinity -13.20 CR1 20 → Cloud-Cloud collision. UC HII g018.15-0.29 CR5 -13.40 10 P1 RA -13.60 18.460 18.450 18.440 18.430 18.420 18.410 18.400 18.390

  10. Supernova shock? DEC DEC DEC (°) 55 160 n0=0.001 cm -3 13 CO(1−0) -12.7 v cent map CR4 CR4 CR4 54 140 2 -12.8 53 120 -12.9 52 1.5 100 r SNR (parsec) θ (degree) -13.0 51 80 P2 P2 P2 CR2 CR2 CR2 1 -13.1 50 60 CR3 CR3 CR3 49 -13.2 40 0.5 CR5 CR5 CR5 48 -13.3 20 CR1 CR1 CR1 47 0 0 -13.4 5000 10000 15000 20000 25000 30000 35000 40000 45000 46 time(yr) -13.5 30 RA RA RA n1=100 cm -3 (h) P1 P1 P1 n1=10 cm -3 18.46 18.45 18.44 18.43 18.42 18.41 18.40 45 0.4 200 25 -11.00 189 CR1 n2=400 cm -3 0.3 DEC 20 (°) 178 GMC n1 -12.00 r SNR (parsec) P2 θ (degree) 15 167 HESS J1826-130 0.2 -13.00 CR1 156 n0=0.001 cm -3 10 R P1 -14.00 HESS J1825-137 0.1 145 5 CR6 134 -15.00 0 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 123 time(yr) -16.00 112 -17.00 RA (h) 101 18.65 18.60 18.55 18.50 18.45 18.40 18.35 18.30 18.25 18.20 18.15 90

  11. γ -ray prediction 1 Scenario 1 ◮ Assume all high energy particles are confined inside the SN shock. � 2 − α ◮ L 100 GeV = R 2 � η pp E SN 2¯ n 100 GeV CR 1 4 d 2 4 α K 1 − α τ pp m p κπ d 2 CR 1 π ◮ Assuming d CR1 =20pc and R CR1 =9pc n=400 cm − 3 and α =2.2 � − 2 � � n d CR 1 ◮ L 100 GeV = 7 . 3 × 10 − 11 � erg cm 2 s − 1 400 cm − 3 28 pc CR1 L 100 GeV =2.12 × 10 − 12 erg r CR1 cm − 2 s − 1 .for HESS J1825-137 d center: WAY TOO HIGH CR1 x SN origin

  12. γ -ray prediction 2 Scenario 1 ◮ Assume all high energy particles escaped the high energy particles escaped the SN shock. � � E B ◮ D ( E ) = D 0 10 GeV / 3 µ G � − 1 / 4 � B ◮ r 100 GeV ∼ 86 pc 3 µ G ◮ L > 100 GeV ∼ 1 . 1 × 10 − 13 erg cm − 2 s − 1 CR1 Uncertainties regarding the isotropic diffusion of TeV par- SN shock ticle and how much particles escaped the SNR x escaping SN origin CR

  13. HESS J1026-582 Antenna Temperature T A (K) 0.4 CS1 0.2 4e+03 -0.20 0.0 CS8 HI 21cm integrated intensity 3.9e+03 0.4 CS2 v =0−30km/s lsr 0.2 -0.30 3.7e+03 0.0 CS7 0.40 CS3 3.6e+03 0.20 -0.40 CS4 0.00 SiO1 3.4e+03 CS6 HESS J1023-575 -30 -10 10 30 3.3e+03 -0.50 Antenna Temperature T A (K) 0.4 CS4 CS5 0.2 3.1e+03 0.0 CS2 -0.60 3e+03 CS3 0.4 CS5 CS1 CS1 SiO2 SiO3 0.2 0.0 2.8e+03 -0.70 HESS J1026-582 0.40 CS6 2.7e+03 Spitzer 8 micro MOST 843 micro 0.20 284.80 284.70 284.60 284.50 284.40 284.30 0.00 2.5e+03 Antenna Temperature T A (K) Antenna Temperature T A (K) 0.4 SiO1 0.4 CS7 -30 -10 10 30 0.2 0.2 0.0 0.0 0.4 SiO2 0.4 CS8 0.2 0.2 0.0 0.0 0.40 0.40 SiO3 CS9 0.20 0.20 0.00 0.00 -30 -10 10 30 -30 -10 10 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend