modelling the gamma ray emission from regions adjacent to
play

Modelling the gamma-ray emission from regions adjacent to HESS - PowerPoint PPT Presentation

Modelling the gamma-ray emission from regions adjacent to HESS J1825-137 Tiffany Collins Supervisor: Gavin Rowell 1 HESS J1825-137 (H. E. S. S. Collaboration et al. 2018) 2 HESS J1825-137 (HAWC Collaboration et al. (2019)) HAWC


  1. Modelling the gamma-ray emission from regions adjacent to HESS J1825-137 Tiffany Collins Supervisor: Gavin Rowell 1

  2. HESS J1825-137 (H. E. S. S. Collaboration et al. 2018) 2

  3. HESS J1825-137 (HAWC Collaboration et al. (2019)) ● HAWC observatory observes γ-rays > 100 TeV from this source. ● A TeV halo can be seen around HESS J1825-137. 3 (H. E. S. S. Collaboration et al. 2018)

  4. HESS J1826-130 (H. E. S. S. Collaboration et al. 2018) 14 11 0.4 HESS J1825-137 HESS J1825-137 8 ● Possible PeVatron candidate. 6 Galactic Latitude (deg) 3 HESS J1826-130 0 0.0 ● Originally considered an p TS extension of HESS J1825-137. SNR G18.6-0.2 -0.4 Come back to this later... PSR J1826-1256 PSR J1826-1256 -0.8 -1.2 PWN G18.5-0.4 PWN G18.5-0.4 19.2 18.8 18.4 18.0 17.6 Galactic Longitude (deg) 4

  5. Yama ● A 2019 paper by Araya et al described new GeV emission observed by Fermi-LAT to the south of HESS J1825-137. What particle accelerator accelerates particles to necessary energetics? ● Related to HESS J1825-137 or LS 5039? (Araya et al. 2019) 5

  6. Possible Accelerators of High Energy Particles HESS J1825-137 LS 5039 Impulsive (progenitor SNR) Continuous (PWN) Impulsive (progenitor SNR) Continuous (radio jet) Hadronic Leptonic Hadronic Leptonic Hadronic Leptonic Hadronic Leptonic PWN : Pulsar Wind Nebula 6 SNR: Supernova Remnant

  7. NANTEN 12CO(1-0) data 15-30 km/s (1.6-2.8 kpc) 40-60 km/s (3.5-4.5 kpc) Gamma-ray flux due to proton-proton and bremsstrahlung interactions is proportional to the density of gas 7

  8. Hα data 120 ● Possible SNR rim for HESS J1825- 0° 137 seems to intersect Yama-B 100 ● Hα “hole” towards object B which the Galactic Latitiude (deg) -1° CO cloud seen in the 15-30 km/s 80 range seems to fit into. R -2° A 60 ● Radio jets from LS 5039 seem to B point in the general direction of H rim 40 C -3° Fermi-LAT Object ABC Yama. LS 5039 PSR 1826-1334 HESS J1825-137 20 20° 19° 18° 17° 16° 15° Galactic Longitude (deg) (Finkbeiner 2003) 8

  9. Progenitor SNR for HESS J1825-137 as the accelerator? Successful models: 10 10 p-p Fermi-LAT GeV region ● Hadronic – Impulsive – Yama-B – 21 & 40 kyrs Fermi-LAT Object B W systematic variation E c systematic variation systematic variation ● Assuming constant energy density, the SNR 1 ) 10 11 contains 5x10 50 ergs of energy. 2 s E 2 dN / dE ( ergcm ● BUT the model has to explain Yama-A and Yama-C simultaneously 10 12 ● Yama-A & C requires > 10 51 ergs within SNR. Note: During modelling, only consider the 10 13 object’s (eg Yama-B) contribution to the total 10 6 10 4 10 2 10 0 10 2 10 4 E (TeV) SED. 9

  10. PWN for HESS J1825-137 as the accelerator? 10 10 ● Leptonic – Continuous – 21 & 40 kyrs ● Required injection luminosity of electrons ~ 10 37 1 ) 10 11 ergs/s 2 s E 2 dN / dE ( ergcm ● Spin down power of pulsar ~ 10 36 ergs/s ● May represent an earlier epoch in the PWN 12 10 Bremsstrahlung history where spin down ~ 10 38 ergs/s (braking IC synchrotron index n=3) Fermi-LAT GeV region Fermi-LAT Object B W systematic variation ● Why would the entirety of the spin down power E c systematic variation systematic variation from pulsar be channelled into Yama? 10 13 14 11 5 10 1 10 4 10 10 10 8 10 10 2 E (TeV) 10

  11. HESS J1825-137 particle transport ● Model electron diffusion vs cooling time between PWN and Yama-B ● Assuming basic diffusion R ( E,t )= √ 2 D ( E ,t ) B E / TeV D ( E,t )= χ D 0 √ B / 3 μ G ● Requires fast diffusion (χ>0.1) for electrons to reach Yama in the age of HESS J1825-137 ● OR requires a more powerful pulsar (Araya et al. 2019) 11

  12. Progenitor SNR for LS 5039 10 10 ● Using ages between 10 3 – 10 6 yr. p-p data points data points (1/3) Energy Range ● No impulsive model meets necessary conditions Cutoff Range Index Range to be successful (energetics ~ 10 51-52 ergs) 1 ) 10 11 2 s ● The SNR associated with the compact object E 2 dN / dE ( ergcm within LS 5039 would be fading or already apart of the ISM. 10 12 10 13 4 10 4 10 6 10 10 2 10 0 10 2 E (TeV) 12

  13. Continuous injection of particles from LS 5039 via accretion 10 10 ● Leptonic – Continuous – 1x10 6 yrs ● Accretion power of matter onto compact object 1 ) 10 11 from companion star = 8 x 10 35 ergs/s (Casares 2 s et al. 2005) E 2 dN / dE ( ergcm ● Requires injection luminosity ~ 10 36 ergs 10 12 Bremsstrahlung ● Possible within systematic variation. IC synchrotron Fermi-LAT GeV region Fermi-LAT Object A ● LS 5039 ~ 0.1 million years old (Moldón et al. W systematic variation E c systematic variation 2012) systematic variation 13 10 10 14 10 11 10 8 10 5 10 2 10 1 10 4 E (TeV) 13

  14. HESS J1825-137 & LS 5039 combination A combination of processes from LS 5039 & HESS J1825- 137 is still possible (Araya et al. 2019) 14

  15. What’s next? MULTIZONE MODELLING! 0.1-1 TeV 1-5 TeV 5-10 TeV ● Multizone Modelling involves solving the particle transport equation over a 3D grid of varying ISM density and B-field. 15

  16. Yama 16

  17. HESS J1826-130 OR Python package gamma-py can predict what CTA will see. 17

  18. Outline ● Attempted to model the GeV Fermi-LAT emission towards the south of HESS J1825- 137. ● The source of acceleration of high energy particles resulting in this emission was assumed to be either an accelerator linked to HESS J1825-137 or LS 5309. ● Neither model alone could explain the GeV gamma-rays. A combination of the two sources may still be possible. ● The next step is Multizone Modelling towards the Fermi-LAT emission. ● Multizone Modelling towards HESS J182-130 will attempt to predict CTA observations. References for single and multizone modelling: ● Sano, H., Yamane, Y., Voisin, F., et al. 2017a, ApJ, 843, 61 ● Voisin, Fabien. “Environment Studies of Pulsar Wind Nebulae and Their Interactions with the Interstellar Medium.” 2017. 18

  19. Backup – Equations governing SED Hadronic (proton-proton): p+p → π 0 + π + + π - π 0 → γ + γ ∞ dN = ∫ A max ( T p ) F ( E γ ,T p ) dE p dE γ E p = E γ Multiplicity of neutral pions Parameterisation Function 19

  20. Backup – Equations governing SED Leptonic (Inverse Compton): e -* +γ * → e - + γ n ( ϵ ) d ϵ dN = 3 4 σ T c ∫ F KN ( E e , E γ , ϵ ) ϵ dE γ (Bremsstrahlung): e -* + Z → e - + Z + γ dN = nc ∫ d σ ( E e , E γ ,Z ) dE e dE γ 20

  21. Backup – Equations governing SED (Synchrotron): e -* + B → e - 3 B ∞ P ( ν )= √ 3 e ν ν c ∫ K 5 ( x ) dx 2 mc ν 3 ν c 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend