mtle 6120 advanced electronic properties of materials
play

MTLE-6120: Advanced Electronic Properties of Materials Fermi theory - PowerPoint PPT Presentation

1 MTLE-6120: Advanced Electronic Properties of Materials Fermi theory of metals Reading: Kasap: 4.6 - 4.7, 4.10 - 4.11 2 Band theory (vs. free electrons) Band energies E = E n ( k ) with complex dependence (vs. E = 2 k 2 / (2 m


  1. 1 MTLE-6120: Advanced Electronic Properties of Materials Fermi theory of metals Reading: ◮ Kasap: 4.6 - 4.7, 4.10 - 4.11

  2. 2 Band theory (vs. free electrons) ◮ Band energies E = E n ( � k ) with complex dependence (vs. E = � 2 k 2 / (2 m ) ) v n ( � v = � � ◮ Group velocity � k ) = ∇ � k E/ � (vs. � k/m ) k ) = � 2 � � − 1 (vs. m ∗ = m ) n ( � k E n ( � ◮ Effective mass tensor ¯ m ∗ ∇ � k ∇ � k ) ◮ Density of states g ( E ) = � � 2d � (2 π ) 3 δ ( E − E n ( � k k )) n � √ √ � 3 E 2 m (vs. g ( E ) = ) 2 π 2 � ◮ Gaps in energy, usually at high-symmetry points in Brillouin zone such as � k = 0 or zone boundaries (vs. all E > 0 allowed) ◮ Metals if HOMO = LUMO and semiconductor/insulator if not (vs. no gap ⇒ always metallic)

  3. 3 Fermi statistics ◮ At temperature T and chemical potential µ , each electronic state of energy E has average occupation 1 f ( E ) = 1 + exp E − µ k B T ◮ In contrast, classical occupation exp µ − E k B T f(E) Fermi Classical 1 0 E µ -2 k B T µ +2 k B T µ

  4. 4 Electron number ◮ Number of states per energy per volume = g ( E ) ◮ Average occupation per state of energy E at temperature T = f ( E ) ◮ Average number of electrons per volume at temperature T , n = � d Eg ( E ) f ( E ) ◮ Classically, for a free electron gas √ � √ � 3 � ∞ E 2 m exp µ − E n = d E 2 π 2 k B T � 0 � √ � 3 � ∞ 1 2 m µ d EE 1 / 2 exp − E = exp 2 π 2 k B T k B T � 0 � √ � 3 1 2 m µ ( k B T ) 3 / 2 = exp k B T Γ(3 / 2) 2 π 2 � � �� � √ π/ 2 �� � 3 = 1 2 mk B T/π µ exp 4 k B T �

  5. 5 Chemical potential: classical ◮ Classically, at finite temperature T , �� � 3 n = 1 2 mk B T/π µ exp 4 � k B T ◮ Electron number density given, chemical potential varies with temperature  � 3  ��  1 2 mk B T/π µ ( T ) = − k B T ln  4 n � ◮ Classically, µ decreases with T as ∼ − T ln T , with µ → 0 as T → 0 ◮ This is the correct behavior for gases, but not electrons!

  6. 6 Electron number: quantum at T = 0 � � 1 + exp E − µ ◮ Fermi function f ( E ) = 1 / → 1 for E < µ − few k B T k B T and f ( E ) → 0 for E > µ + few k B T . � 1 , E < µ ◮ Therefore, for T → 0 , f ( E ) → Θ( µ − E ) ≡ 0 , E > µ ◮ Number of electrons at T = 0 is � µ n = d Eg ( E ) (general) √ � √ � 3 � µ E 2 m = d E (free electrons) 2 π 2 � 0 � √ 2 mµ � 3 1 = 3 π 2 � µ = � 2 2 m (3 π 2 n ) 2 / 3 , ⇒ a non-zero constant

  7. 7 Electron number: finite T corrections For constant n , let’s find the change in µ for small changes in T from T = 0 , � n = d Eg ( E ) f ( E ) � ∂f � � 0 = ∂n ∂T + ∂f ∂µ · ∂µ ⇒ ∂T = d Eg ( E ) ∂T � � � � � � � ∂ 1 + ∂ 1 · ∂µ = d Eg ( E ) 1 + exp E − µ 1 + exp E − µ ∂T ∂µ ∂T k B T k B T exp E − µ � � E − µ � k B T · ∂µ 1 k B T = d Eg ( E ) k B T 2 + � � 2 ∂T 1 + exp E − µ k B T � E − µ � � 1 + ∂µ = d Eg ( E ) 4 k B T cosh 2 E − µ T ∂T 2 k B T � �� � sharp peak at E = µ � E − µ � � d E g ( µ ) + g ′ ( µ )( E − µ ) + · · · + ∂µ = 4 k B T cosh 2 E − µ T ∂T 2 k B T

  8. 8 Electron number: finite T corrections (contd.) � E − µ � � d E g ( µ ) + g ′ ( µ )( E − µ ) + · · · 0 = ∂n + ∂µ ∂T = 4 k B T cosh 2 E − µ T ∂T 2 k B T ≡ 1 T ( I 1 g ( µ ) + I 2 g ′ ( µ )) + ∂µ ∂T ( I 0 g ( µ ) + I 1 g ′ ( µ )) where  1 , n = 0  � ( E − µ ) n  I n ≡ d E = 0 , n = 1 4 k B T cosh 2 E − µ  2 k B T  ( πk B T ) 2 / 3 , n = 2 Therefore ∂T = − I 2 g ′ ( µ ) I 0 Tg ( µ ) = − ( πk B ) 2 g ′ ( µ ) T µ ( T ) = µ (0) − ( πk B T ) 2 g ′ ( µ ) ∂µ ⇒ 3 g ( µ ) 6 g ( µ ) √ E , g ′ ( µ ) /g ( µ ) = 1 / (2 µ ) ⇒ For g ( E ) ∝ � � 1 − ( πk B T ) 2 µ ( T ) = µ (0) 12 µ (0) 2

  9. 9 Electron chemical potential: typical numbers A, 1 valence electron/atom ⇒ n ≈ 2 . 6 × 10 28 m -3 ◮ Sodium: BCC 4.23 ˚ A, 3 valence electrons/atom ⇒ n ≈ 1 . 8 × 10 29 m -3 ◮ Aluminum: FCC 4.05 ˚ ◮ µ (0) = � 2 2 m (3 π 2 n ) 2 / 3 ≈ 3 . 2 eV for Na, and ≈ 12 eV for Al ◮ In comparison, k B T ≈ 0.026 eV at 300 K and ≈ 0.26 eV at 3000 K ( > T melt ) � � 1 − ( πk B T ) 2 ◮ Therefore µ ( T ) = µ (0) is 12 µ (0) 2 essentially constant over relevant T range! ◮ Zero temperature chemical potential µ (0) ≡ E F , Fermi energy

  10. 10 Properties at the Fermi energy ◮ Fermi energy E F separates occupied states and unoccupied states at T = 0 ◮ For free electrons, E F = µ 0 = � 2 2 m (3 π 2 n ) 2 / 3 ◮ With band structure E = E n ( � k ) , Fermi surface ≡ set of � k with E = E F ◮ For free electrons E ( � k ) = � 2 k 2 / 2 m , the Fermi surface is a sphere of radius k F = √ 2 mE F / � = (3 π 2 n ) 1 / 3 ◮ Fermi velocity v F = average magnitude of group velocity on Fermi surface ◮ For free electrons, v F = � k F /m ◮ Many electronic properties of metals determined by Fermi properties alone (exclusively a function of electron density for free electrons) ◮ Fermi-energy density of states g ( E F ) � √ √ E F � 3 ◮ For free electrons, g ( ǫ F ) = 2 m 3 n = 2 π 2 � 2 E F

  11. 11 Electronic heat capacity: classical Average energy in free electron gas of density n : � C V ≡ d U d T = d d EEg ( E ) f ( E ) d T � √ = d Ee ( µ − E ) / ( k B T ) d EEg 0 d T � = d d T g 0 e µ/ ( k B T ) d EE 3 / 2 e − E/ ( k B T ) = d d T g 0 e µ/ ( k B T ) Γ(5 / 2)( k B T ) 5 / 2 � d Eg ( E ) f ( E ) = g 0 e µ/ ( k B T ) Γ(3 / 2)( k B T ) 3 / 2 n ≡ � � n Γ(5 / 2)( k B T ) 5 / 2 C V = d = 3 ⇒ 2 nk B Γ(3 / 2)( k B T ) 3 / 2 d T A constant which looks familiar because equipartition theorem!

  12. 12 Electronic heat capacity: quantum � ∂f ( E ) � � + ∂f ( E ) · d µ C V = d EEg ( E ) (just extra E than in n ) ∂T ∂µ d T � E − µ � � Eg ( E ) + d µ = d E 4 k B T cosh 2 E − µ T d T 2 k B T � E − µ � � d E µg ( µ ) + ( µg ( µ )) ′ ( E − µ ) + · · · − I 2 g ′ ( µ ) = 4 k B T cosh 2 E − µ T I 0 Tg ( µ ) 2 k B T � I 1 � � I 2 � I 2 g ′ ( µ ) I 2 g ′ ( µ ) + ( µg ( µ )) ′ = µg ( µ ) T − I 0 T − I 1 + · · · I 0 Tg ( µ ) I 0 Tg ( µ ) ( I n defined in finite T corrections to µ derivation) = 0 − µg ′ ( µ ) I 2 T + ( µg ( µ )) ′ I 2 T − 0 + · · · (since I 1 = 0 ) T + · · · = g ( E F ) π 2 k 2 = g ( µ ) I 2 B T + O ( T 2 ) (general g ( E f ) ) 3 π 2 k B T = 3 2 nk B (free-electron g ( E F ) ) 3 E F

  13. 13 Electronic heat capacity: comparison ◮ Classical: C V = 3 2 nk B (equipartition) π 2 k B T ◮ Quantum: C V = 3 2 nk B (equipartition) 3 E F ◮ Quantum mechanical result reduced by factor ∼ k B T/E F because only electrons near Fermi energy ‘participate’ ◮ Same reason for relative constancy of µ in quantum case ◮ Electrons in metal behave classically only when k B T ∼ E F , which is ∼ 3 × 10 4 K for Na and ∼ 1 . 4 × 10 5 K for Al, i.e. never!

  14. 14 Electronic density of states: Al free electron g ( E ) [eV -1 nm -3 ] 30 20 All states Occupied states ( T = 300 K) Occupied states ( T = 3000 K) Occupied states ( T = 30000 K) 10 0 -10 -5 0 5 10 E-E F [eV] ◮ Parabolic DOS, E F ≈ 11 . 8 eV: now plotted relative to E − E F ◮ Heat stored by moving electrons ∼ k B T below Fermi level by ∼ k B T ◮ Therefore, U ∝ T 2 and C V ∝ T ◮ Only narrow window around Fermi level participates even at T melt ◮ Resembles Maxwell-Boltzmann (classical) distribution only for k B T ∼ E F

  15. 15 Electronic density of states: real metals DOS resembles free electrons for an energy window around Fermi level for best conducting metals (also the plasmonic metals) 2.5 DOS [10 29 eV -1 m -3 ] a) Al b) Ag 0.4 2 0.3 1.5 0.2 1 PBEsol+U (this work) 0.1 0.5 Lin et al. 2008 free electron DOS [10 29 eV -1 m -3 ] c) Au d) Cu 1.5 3 1 2 0.5 1 0 0 -10 -5 0 5 10 -10 -5 0 5 10 ε - ε F [eV] ε - ε F [eV] Phys. Rev. B 91 , 075120 (2016)

  16. 16 Electronic heat capacity: real metals Linear heat capacity till k B T accesses difference from free electron model 8 12 a) Al b) Ag C e [10 5 J/m 3 K] 6 8 4 4 Eq. 3 (this work) 2 Lin et al. 2008 Sommerfeld c) Au d) Cu C e [10 5 J/m 3 K] 12 20 15 8 10 4 5 0 0 0 2 4 6 8 0 2 4 6 8 T e [10 3 K] T e [10 3 K] Phys. Rev. B 91 , 075120 (2016)

  17. 17 Fermi surfaces: real metals Fermi surface somewhat spherical for best conducting metals ACS Nano 10 , 957 (2016)

  18. 18 Fermi surface: density of states ◮ Consider arbitrary shaped equi-energy surfaces in k -space ◮ (For E = E F , it be the Fermi surface) ◮ Let A ( E ) be the area in k -space of this surface (with elements d A ) ◮ Number of states between E and E + dE is � 2 d N = d A d k (2 π ) 3 � 2 d A d k = d E d E (2 π ) 3 � 2 1 = d A � v ( k )d E (2 π ) 3 2 1 = (2 π ) 3 A ( E )d E � ¯ v ( E ) ≡ g ( E )d E 2 A ( E ) ⇒ g ( E ) = (2 π ) 3 � ¯ v ( E )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend