motivation and context exotic states of qcd spectrum
play

motivation and context: exotic states of QCD spectrum phenomenology - PowerPoint PPT Presentation

production and search for exotic mesons at COMPASS and JLab12 Vladiszlav Pauk JPAC @ JLab MESON 2016 Krakow, Poland O U T L I N E - 1- motivation and context: exotic states of QCD spectrum phenomenology and formalism:


  1. η′ − π production and search for exotic mesons at COMPASS and JLab12 Vladiszlav Pauk JPAC @ JLab MESON 2016 Krakow, Poland

  2. O U T L I N E - 1- ‣ motivation and context: exotic states of QCD spectrum ‣ phenomenology and formalism: peripheral meson production @ GlueX & COMPASS ‣ data analysis: η π production @ COMPASS ‣ model and theoretical analysis: Regge formalism and finite-energy sum rules ( FESR ) ‣ summary and outlook: GlueX and expectations

  3. Q C D S P E C T R U M A N D E X O T I C H A D R O N S - 2- ordinary hadrons ~300 states color singlets only few well-established exotic hadrons 0 + - 2 + - 1 - + J PC exotic states Dudek, et al. (2010) isovector meson spectrum from lattice QCD @ m π =700 MeV

  4. Q C D S P E C T R U M A N D E X O T I C H A D R O N S - 2- ordinary hadrons ~300 states color singlets only few well-established exotic hadrons gluon excitations 0 + - 2 + - 1 - + J PC information about soft gluonic modes of QCD exotic states Dudek, et al. expected ground state (2010) exotic meson : J PC = 1 − + isovector meson spectrum from lattice QCD @ m π =700 MeV

  5. S E A R C H E S F O R H Y B R I D S I N P E R I P H E R A L P R O D U C T I O N - 3- decay modes π η , π η ’, π ρ , π a 1 , π b 1 , π f 1 I G J PC = 1 − 1 − +

  6. S E A R C H E S F O R H Y B R I D S I N P E R I P H E R A L P R O D U C T I O N - 3- decay modes π η , π η ’, π ρ , π a 1 , π b 1 , π f 1 I G J PC = 1 − 1 − + π − p → π − η p E852 , GAMS, KEK, VES decay - π 1 (1400) π η pn → η π − π 0 Crystal Barrel π − p → π − η ’ p E852 decay ︎ π η ’, π ρ π 1 (1600) π − p → π − ρ 0 p VES, E852 controversial! decay π − p → π − b 1 p E852 π 1 (2015) π b 1 , π f 1

  7. S E A R C H E S F O R H Y B R I D S I N P E R I P H E R A L P R O D U C T I O N - 3- decay modes π η , π η ’, π ρ , π a 1 , π b 1 , π f 1 I G J PC = 1 − 1 − + π − p → π − η p E852 , GAMS, KEK, VES decay - π 1 (1400) π η pn → η π − π 0 Crystal Barrel π − p → π − η ’ p E852 decay ︎ π η ’, π ρ π 1 (1600) π − p → π − ρ 0 p VES, E852 controversial! decay π − p → π − b 1 p E852 π 1 (2015) π b 1 , π f 1 ? COMPASS on 191 GeV pion beam π 1 (1400) π p → Xp → η (‘) π p data @ CERN π 1 (1600) GlueX on 12 GeV electron beam γ p → Xp → η (‘) π p Forthcoming data @ JLab

  8. P E R I P H E R A L P R O D U C T I O N I N R E G G E M O D E L - 4- g y e r n e @ g e r a l R A π p → πη p = R A π R → πη R factorization p p Regge exchange Reggeon-particle amplitude

  9. P E R I P H E R A L P R O D U C T I O N I N R E G G E M O D E L - 4- g y e r n e @ g e r a l R A π p → πη p = R A π R → πη R factorization p p Regge exchange Reggeon-particle amplitude well-defined quantum numbers for each Regge exchange discontinuity only no overlapping discontinuities in the s-channel invariant mass in invariant masses dispersion relation Reggeization at fixed t

  10. F I N I T E E N E R G Y S U M R U L E S - 5- h y i g h r g e e n lo w e n e r g y s 1 =m( η π ) 2 N/D Regge pole t 1 s s s t 2 t reconstructed Regge s lhs h parametrization from PWA r I d s A ( s ) − A R ( s ) 0 = Cauchy integral theorem

  11. F I N I T E E N E R G Y S U M R U L E S - 5- h y i g h r g e e n lo w e n e r g y s 1 =m( η π ) 2 N/D Regge pole t 1 s s s t 2 t reconstructed Regge s lhs h parametrization from PWA r Z N d s Im A ( s ) = N α +1 V 0 aim: first systematic analysis of peripheral production using FESR

  12. ηπ P H E N O M E N O L O G Y O F P R O D U C T I O N AT C O M PA S S - 6- CM θ m( η π ) < 3 (GeV/c 2 ) 2 P 1 θ ~ 0 a 2 /a 4 cos θ s 0 P t θ ~ π PWA - 1 m( η π ) [GeV/c 2 ] η π vs η ’ π 5 ∙ 10 3 D-wave a 2 (1320) COMPASS coll. 2 c s / t V (2015) n a 4 (2040) e e M v 1 0 3 E 0 4 4 1 . 6 2 2 . m( η π ) [GeV/c 2 ]

  13. ηπ P H E N O M E N O L O G Y O F P R O D U C T I O N AT C O M PA S S - 6- CM θ m( η π ) < 3 (GeV/c 2 ) 2 m( η π ) ∊ [5-6] (GeV/c 2 ) 2 P π 1 P+f 2 θ ~ 0 fwd π P a 2 /a 4 cos θ s 0 P η fwd η t θ ~ π PWA a 2 - 1 P m( η π ) [GeV/c 2 ] η π vs η ’ π 5 ∙ 10 3 D-wave a 2 (1320) COMPASS coll. 2 c s / t V (2015) n a 4 (2040) e e M v 1 0 3 E 0 4 4 1 . 6 2 2 . m( η π ) [GeV/c 2 ]

  14. ηπ P H E N O M E N O L O G Y O F P R O D U C T I O N AT C O M PA S S - 6- CM θ m( η π ) < 3 (GeV/c 2 ) 2 m( η π ) ∊ [5-6] (GeV/c 2 ) 2 P π 1 P+f 2 θ ~ 0 fwd π P a 2 /a 4 cos θ + s 0 P η fwd η t θ ~ π PWA a 2 - 1 P m( η π ) [GeV/c 2 ] = Σ even waves η π vs η ’ π (D+G-waves) 5 ∙ 10 3 D-wave a 2 (1320) COMPASS coll. 2 c s / t V (2015) n a 4 (2040) e e M v P 1 0 3 E ~ A( θ )+A(- θ ) 0 4 4 1 . 6 2 2 . m( η π ) [GeV/c 2 ]

  15. ηπ P H E N O M E N O L O G Y O F P R O D U C T I O N AT C O M PA S S - 6- CM θ m( η π ) < 3 (GeV/c 2 ) 2 m( η π ) ∊ [5-6] (GeV/c 2 ) 2 P π 1 P+f 2 θ ~ 0 fwd π P ? cos θ — s 0 P η fwd η t θ ~ π PWA a 2 - 1 P m( η π ) [GeV/c 2 ] = Σ odd waves η π vs η ’ π (P-wave) 5 ∙ 10 3 ? P-wave COMPASS coll. 2 c exotic state s / t V (2015) n e e M v P 1 0 3 E A( θ ) - A(- θ ) ~ 0 4 4 1 . 6 2 2 . m( η π ) [GeV/c 2 ]

  16. S I N G L E A N D D O U B L E R E G G E L I M I T S - 7- Single-Regge limit P Double-Regge limit P+f 2 P a 2 PWE for pomer P

  17. S I N G L E A N D D O U B L E R E G G E L I M I T S - 7- N J ( s 1 ) Single-Regge X λ 0 ( θ ) e i λφ D J ( s 1 ) d J s 1 =m( η π ) 2 A = K R ( s ) limit J, λ P s =(CoM energy) 2 cos θ = a 0 + b 0 t 1 + ct 2 1 Gottfried-Jackson angles cos φ = a + bs 2 s t 1 - (beam mom. transfer) 2 Double-Regge limit P+f 2 s 1 =m( η π ) 2 forward π amplitude A R t = K R ( s 1 , t 1 ) R ( s 2 ) V ( ω ) P s 2 =m(p η ) 2 cos ω ≈ s 1 s 2 Toller angle u 1 - (beam mom. transfer) 2 s a 2 forward η amplitude A R PWE for pomer u = K R ( s 1 , u 1 ) R ( s 2 ) V ( ω ) P

  18. C O N S T R A I N T S A N D E X P E C TAT I O N S - 8- conservation of parity partial-wave amplitudes A L → K L A L and angular momentum Z threshold behavior A L = A ( Ω ) Y L ( Ω ) d Ω K L ∼ q L q L - orbital angular momentum q = ( s 1 − ( m π + m η ) 2 )( s 1 − ( m π − m η ) 2 ) Pomeron exchange contribution A ∼ s 1 e α 0 t log s 1 asymptotic behavior of the P-wave 1 A 1 ∼ log s 1 PWE for pomer

  19. C O N S T R A I N T S A N D E X P E C TAT I O N S - 8- conservation of parity partial-wave amplitudes A L → K L A L and angular momentum Z threshold behavior A L = A ( Ω ) Y L ( Ω ) d Ω K L ∼ q L q L - orbital angular momentum q = ( s 1 − ( m π + m η ) 2 )( s 1 − ( m π − m η ) 2 ) Pomeron exchange contribution ? A ∼ s 1 e α 0 t log s 1 0.2 asymptotic behavior of the P-wave P-wave: 0.1 1 L=1 A 1 ∼ log s 1 PWE for pomer 0 normalization constrained 1 2 3 4 5 (m π +m η ) 2 s 1 [GeV/c 2 ] by sum rules

  20. F I N I T E - E N E R G Y S U M R U L E - 9- FESR for forward-backward asymmetry N Z X d s 1 Im A even/odd ( s 1 ) = N α R V R R 0 antisymmetric combination: symmetric combination: exotic non-exotic odd partial waves even partial waves exchanges: P+f 2 - a 2 exchanges: P+f 2 +a 2

  21. F I N I T E - E N E R G Y S U M R U L E - 9- FESR for forward-backward asymmetry N Z X d s 1 Im A even/odd ( s 1 ) = N α R V R R 0 antisymmetric combination: symmetric combination: exotic non-exotic odd partial waves even partial waves exchanges: P+f 2 - a 2 exchanges: P+f 2 +a 2 expansion in powers of s 2 /s N Z C ( i ) L ( N ) V ( i ) X d s 1 Im A L ( s 1 ) = R V ( i ) ⇣ s 2 ⌘ i X V ( ω ) = R,i 0 s i stabilize coherent contributions from truncated PW series larger angular momenta

  22. S U M M A R Y & O U T L O O K - 10 - γ γ γ photoproduction ρ ω @ GlueX ρ + π ρ ρ γ p → Xp → π η p p p p

  23. S U M M A R Y & O U T L O O K - 10 - γ γ γ photoproduction ρ ω @ GlueX ρ + π ρ ρ γ p → Xp → π η p p p p ‣ construct fitting functions for the single- and double-diffractive regime using Regge formalism ; parametrize the low-energy amplitude within N/D formalism ‣ extract the parameters of the reggeon-particle amplitude ‣ analyze correlation between low- and high-energy regions using FESR

  24. S U M M A R Y & O U T L O O K - 10 - γ γ γ photoproduction ρ ω @ GlueX ρ + π ρ ρ γ p → Xp → π η p p p p ‣ construct fitting functions for the single- and double-diffractive regime using Regge formalism ; parametrize the low-energy amplitude within N/D formalism ‣ extract the parameters of the reggeon-particle amplitude ‣ analyze correlation between low- and high-energy regions using FESR expectations ‣ non-trivial correlation between production of exotic states and violation of exchange degeneracy ‣ sensitivity to the gluon component of η ’

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend