momentum space treatment of the coulomb force screening
play

Momentum-space treatment of the Coulomb force: Screening and - PowerPoint PPT Presentation

Momentum-space treatment of the Coulomb force: Screening and renormalization A. Deltuva Vilnius University In collaboration with A. C. Fonseca and P . U. Sauer Outline Momentum-space description of few-body scattering: screening and


  1. Momentum-space treatment of the Coulomb force: Screening and renormalization A. Deltuva Vilnius University In collaboration with A. C. Fonseca and P . U. Sauer

  2. Outline Momentum-space description of few-body scattering: screening and renormalization for Coulomb [Taylor, Alt, Sandhas, ...] S&R variations and other methods Applications: 3N, 4N, nuclear reactions, ...

  3. Screened Coulomb C ( r ) e − ( r R ) n w R ( r ) = w standard scattering theory

  4. Screened Coulomb C ( r ) e − ( r R ) n w R ( r ) = w standard scattering theory nature: Coulomb is screened at large distances large R : physical observables insensitive to screening, screened and full Coulomb physically indistinguishable

  5. Screened Coulomb C ( r ) e − ( r R ) n w R ( r ) = w standard scattering theory nature: Coulomb is screened at large distances large R : physical observables insensitive to screening, screened and full Coulomb physically indistinguishable in the R → ∞ limit physical results are recovered

  6. Screened and full Coulomb physically indistinguishable ? � p ′ | T R | p � � p ′ | T − − − → C | p � R → ∞

  7. Screened and full Coulomb physically indistinguishable ? e 2 i φ R � p ′ | T R | p � � p ′ | T − − − → C | p � R → ∞

  8. Screened and full Coulomb physically indistinguishable initial physical state: wave packet ϕ in ( p ) outgoing wave packet � ϕ out ( p ′ ) = d 3 p � p ′ | S | p � ϕ in ( p ) ? � � d 2 ˆ p e 2 i φ R � p ′ | T R | p � ϕ in ( p ) − d 2 ˆ C | p � ϕ in ( p ) p � p ′ | T ∼ − − → R → ∞

  9. Screened and full Coulomb physically indistinguishable initial physical state: wave packet ϕ in ( p ) outgoing wave packet � ϕ out ( p ′ ) = d 3 p � p ′ | S | p � ϕ in ( p ) ? � � d 2 ˆ p e 2 i φ R � p ′ | T R | p � ϕ in ( p ) − d 2 ˆ C | p � ϕ in ( p ) p � p ′ | T ∼ − − → R → ∞ p ′ = p : e 2 i φ R � p ′ | T R | p � − R → ∞ � p ′ | T − − → C | p � as distribution

  10. Screened and full Coulomb physically indistinguishable initial physical state: wave packet ϕ in ( p ) outgoing wave packet � ϕ out ( p ′ ) = d 3 p � p ′ | S | p � ϕ in ( p ) ? � � d 2 ˆ p e 2 i φ R � p ′ | T R | p � ϕ in ( p ) − d 2 ˆ C | p � ϕ in ( p ) p � p ′ | T ∼ − − → R → ∞ p ′ = p : e 2 i φ R � p ′ | T R | p � − R → ∞ � p ′ | T − − → C | p � as distribution φ R − R → ∞ [ σ L − η LR ] − R → ∞ α e M / p [ ln ( 2 pR ) − C / n ] − − → − − → [ J. R. Taylor, Nuovo Cimento B23 , 313 (1974) ]

  11. Screened and full Coulomb wave functions r < R : w R ( r ) ≈ w C ( r ) ⇓ e i φ LR � r | ψ (+) LR ( p ) � ≈� r | ψ (+) LC ( p ) �

  12. Screened and full Coulomb wave functions r < R : w R ( r ) ≈ w C ( r ) ⇓ e i φ LR � r | ψ (+) LR ( p ) � ≈� r | ψ (+) LC ( p ) � e i φ R | ψ (+) R → ∞ | ψ (+) R ( p ) � − − − → C ( p ) � [ V. G. Gorshkov, Sov. Phys.-JETP 13 , 1037 (1961) ]

  13. Screening and renormalization Renormalization of the on-shell screened Coulomb transition matrix T R = w R + w R G 0 T R and wave function in the limit R → ∞ yields Coulomb amplitude and Coulomb wave function T R z − 1 R → ∞ T R − − − → C as distribution ( 1 + G 0 T R ) | p � z − 1 / 2 R → ∞ | ψ (+) − − − → C ( p ) � R z R = e − 2 i φ R

  14. Two-particle scattering transition matrix T ( R ) = v + w R +( v + w R ) G 0 T ( R )

  15. Two-particle scattering transition matrix T ( R ) = v + w R +( v + w R ) G 0 T ( R ) with long-range and Coulomb-distorted short-range parts T ( R ) = T R +( 1 + T R G 0 ) ˜ T ( R ) ( 1 + G 0 T R ) T ( R ) = v + vG R ˜ T ( R ) ˜

  16. Two-particle scattering transition matrix T ( R ) = v + w R +( v + w R ) G 0 T ( R ) with long-range and Coulomb-distorted short-range parts T ( R ) = T R +( 1 + T R G 0 ) ˜ T ( R ) ( 1 + G 0 T R ) T ( R ) = v + vG R ˜ T ( R ) ˜ Renormalized amplitude: T ( R ) z − 1 T ( C ) | ψ (+) R → ∞ T = T C + � ψ ( − ) C | ˜ R − − − → C �

  17. Two-particle scattering transition matrix T ( R ) = v + w R +( v + w R ) G 0 T ( R ) with long-range and Coulomb-distorted short-range parts T ( R ) = T R +( 1 + T R G 0 ) ˜ T ( R ) ( 1 + G 0 T R ) T ( R ) = v + vG R ˜ T ( R ) ˜ Renormalized amplitude: T ( R ) z − 1 T ( C ) | ψ (+) R → ∞ T = T C + � ψ ( − ) C | ˜ R − − − → C � − 1 − 1 R [ T ( R ) − T R ] z = T C + lim R → ∞ z 2 2 R short-range part: fast convergence with R

  18. Test: convergence with R in pp scattering w R ( r ) w C ( r ) = e − ( r R ) n n = 1 1 n = 4 n → ∞ 0 0 1 2 r/R

  19. Test: convergence with R in pp scattering exact w R ( r ) w C ( r ) = e − ( r R ) n n = 1 n = 4 n → ∞ 52 η (deg) n = 1 0.001% 1 n = 4 ↓ n → ∞ ↑ 50 1 S 0 E p = 3 MeV 0 0 1 2 10 20 30 40 r/R R (fm) optimal choice: 3 ≤ n ≤ 8

  20. Limits of practical applicability p → 0 : κ = α M / p , σ L = arg Γ ( 1 + L + i κ ) , and z R diverge, renormalization procedure ill-defined

  21. Limits of practical applicability p → 0 : κ = α M / p , σ L = arg Γ ( 1 + L + i κ ) , and z R diverge, renormalization procedure ill-defined ⇒ slow convergence with R at low relative energies 46.0 1 MeV 45.5 η (deg) 0.1 MeV 7.0 6.5 0.01 MeV 0.5 0.0 20 100 500 R (fm)

  22. Three-particle scattering: short-range forces Faddeev / Alt, Grassberger, and Sandhas equations 0 + ∑ δ βα G − 1 δ βσ T σ G 0 U σα U βα = ¯ ¯ σ 0 + ∑ U 0 α = G − 1 T σ G 0 U σα σ T σ = v σ + v σ G 0 T σ G 0 = ( E + i 0 − H 0 ) − 1 momentum-space partial-wave representation

  23. AGS equations with 3BF 3 ∑ V 3 BF = u α α = 1 0 + ∑ δ βα G − 1 δ βγ T γ G 0 U γα U βα = ¯ ¯ γ + u α + ∑ u γ G 0 ( 1 + T γ G 0 ) U γα γ

  24. Three-particle scattering: including screened Coulomb Faddeev / Alt, Grassberger, and Sandhas equations 0 + ∑ U ( R ) δ βσ T ( R ) σ G 0 U ( R ) δ βα G − 1 βα = ¯ ¯ σα σ 0 + ∑ U ( R ) T ( R ) σ G 0 U ( R ) 0 α = G − 1 σα σ T ( R ) = v σ + w σ R +( v σ + w σ R ) G 0 T ( R ) σ σ G 0 = ( E + i 0 − H 0 ) − 1 momentum-space partial-wave representation

  25. Three-particle scattering: including screened Coulomb Faddeev / Alt, Grassberger, and Sandhas equations 0 + ∑ U ( R ) δ βσ T ( R ) σ G 0 U ( R ) δ βα G − 1 βα = ¯ ¯ σα σ 0 + ∑ U ( R ) T ( R ) σ G 0 U ( R ) 0 α = G − 1 σα σ T ( R ) = v σ + w σ R +( v σ + w σ R ) G 0 T ( R ) σ σ G 0 = ( E + i 0 − H 0 ) − 1 momentum-space partial-wave representation Additional difficulties: quasi-singular nature of screened Coulomb potential slow partial-wave convergence

  26. Three-particle scattering: including screened Coulomb Faddeev / Alt, Grassberger, and Sandhas equations 0 + ∑ U ( R ) δ βσ T ( R ) σ G 0 U ( R ) δ βα G − 1 βα = ¯ ¯ σα σ 0 + ∑ U ( R ) T ( R ) σ G 0 U ( R ) 0 α = G − 1 σα σ T ( R ) = v σ + w σ R +( v σ + w σ R ) G 0 T ( R ) σ σ G 0 = ( E + i 0 − H 0 ) − 1 momentum-space partial-wave representation Additional difficulties: quasi-singular nature of screened Coulomb potential slow partial-wave convergence R → ∞ limit?

  27. Three-particle scattering: R → ∞ limit • W c . m . α R • long-range part • α R G ( R ) T c . m . α R = W c . m . α R + W c . m . α T c . m . α R

  28. Three-particle scattering: R → ∞ limit • W c . m . α R • Split into long-range part • α R G ( R ) T c . m . α R = W c . m . α R + W c . m . α T c . m . α R and Coulomb-distorted short-range part U ( R ) β R G ( R ) U ( R ) βα [ 1 + G ( R ) βα = δ βα T c . m . α R +[ 1 + T c . m . α T c . m . β ] ˜ α R ] U ( R ) U ( R ) 0 α [ 1 + G ( R ) [ ρ is neutral ] 0 α = [ 1 + T ρ R G 0 ] ˜ α T c . m . α R ]

  29. Three-particle scattering: R → ∞ limit • W c . m . α R • Split into long-range part • α R G ( R ) T c . m . α R = W c . m . α R + W c . m . α T c . m . α R and Coulomb-distorted short-range part U ( R ) β R G ( R ) U ( R ) βα [ 1 + G ( R ) βα = δ βα T c . m . α R +[ 1 + T c . m . α T c . m . β ] ˜ α R ] U ( R ) U ( R ) 0 α [ 1 + G ( R ) [ ρ is neutral ] 0 α = [ 1 + T ρ R G 0 ] ˜ α T c . m . α R ] Renormalized amplitudes: − 1 − 1 R f [ U ( R ) U βα = δ βα T c . m . βα − δ βα T c . m . R → ∞ Z α R ] Z α C + lim 2 2 Ri − 1 − 1 R U ( R ) U 0 α = lim R → ∞ z 0 α Z 2 2 Ri

  30. Three-particle scattering: R → ∞ limit • W c . m . α R • Split into long-range part • α R G ( R ) T c . m . α R = W c . m . α R + W c . m . α T c . m . α R and Coulomb-distorted short-range part U ( R ) β R G ( R ) U ( R ) βα [ 1 + G ( R ) βα = δ βα T c . m . α R +[ 1 + T c . m . α T c . m . β ] ˜ α R ] U ( R ) U ( R ) 0 α [ 1 + G ( R ) [ ρ is neutral ] 0 α = [ 1 + T ρ R G 0 ] ˜ α T c . m . α R ] Renormalized amplitudes: − 1 − 1 R f [ U ( R ) U βα = δ βα T c . m . βα − δ βα T c . m . R → ∞ Z α R ] Z α C + lim 2 2 Ri − 1 − 1 R U ( R ) U 0 α = lim R → ∞ z 0 α Z 2 2 Ri short-range part: fast convergence with R

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend