modelling results on
play

Modelling results on New Generation Solar Cooling systems Chiara - PowerPoint PPT Presentation

Modelling results on New Generation Solar Cooling systems Chiara Dipasquale INTRODUCTION 4 examples of new generation solar cooling systems: Building description and solar cooling plant layout; Working modes and characteristics of


  1. Modelling results on New Generation Solar Cooling systems Chiara Dipasquale

  2. INTRODUCTION 4 examples of new generation solar cooling systems: • Building description and solar cooling plant layout; • Working modes and characteristics of system components; • Operational modes and system size variants, and results. 2 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  3. CASE 1 Building description Reference Single Family House - SFH Reference Small Multi Family House - sMFH Number of floors 5 Number of floors 2 Living area per dwelling 50 m² Living area per floor 50 m² Number dwelling per floor 2 Yearly heating demand 45 kWh/(m²y) Yearly heating demand 45 kWh/(m²y) 3 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  4. CASE 1 Solar cooling plant layout 2 • Use of solar thermal energy for DHW production and space heating T6.1 1 • Use of PV energy for the HVAC PV_PHOTOVOLTAIC system electricity consumption STC_SOLAR THERMAL 4 COLLECTORS 6 T5.4 T1.3 DHW 3 T5.2 GENERATION DEVICE 1. Solar thermal collectors 7 2. PV panels TES_THERMAL T5.5 ENERGY STORAGE 3. Air-to-water heat pump DISTRIBUTION 4. Storage tank DEVICES T5.6 5. Buffer 5 6. DHW distribution circuit BUF_BUFFER HJ_HYDRAULIC JUNCTION 7. H&C Distribution circuit 4 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  5. CASE 1 Working conditions TES charging by solar energy T6.1 C6 C2 PM1_1 PV_PHOTOVOLTAIC C1 C5 HX_1 PM2_2 STC_SOLAR THERMAL COLLECTORS PM2_4 VM1_5 T5.4 VM1_4 T1.3 VM2_3 T5.3 C1 C5 VM_2 0 C1 1 C5 200 l 1 0 C2 C6 DHW HX_2 1 T5.2 TES_SNS2 VM2_2 C3 C2 C6 0 C5 1 VD_1 PM2_3 C3 out 0 C4 TES_SNS3 A/W HEAT PUMP TES_SNS5 VM1_6 TES_THERMAL T5.5 1 ENERGY STORAGE C5 C1 0 C2 C6 PM1_5 C4 C6 BUF_SNS1 C2 VM VM1_7 T5.6 1 C1 BUF_SNS5 C5 C1 0 C2 C6 BUF_BUFFER PM1_6 HJ_HYDRAULIC JUNCTION 5 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  6. CASE 1 Working conditions TES charging by heat pump T6.1 C6 C2 PM1_1 C1 PV_PHOTOVOLTAIC C5 HX_1 PM2_2 STC_SOLAR THERMAL COLLECTORS PM2_4 VM1_5 T5.4 VM1_4 VM2_3 T1.3 T5.3 C1 C5 VM_2 0 1 C1 C5 200 l 1 0 C2 C6 DHW HX_2 1 T5.2 VM2_2 TES_SNS2 C3 C2 C6 0 C5 1 VD_1 PM2_3 0 C3 out C4 TES_SNS3 A/W HEAT PUMP TES_SNS5 VM1_6 T5.5 TES_THERMAL 1 ENERGY STORAGE C5 C1 0 C2 C6 PM1_5 C4 C6 BUF_SNS1 C2 VM VM1_7 T5.6 1 C1 BUF_SNS5 C5 C1 0 C6 BUF_BUFFER C2 PM1_6 HJ_HYDRAULIC JUNCTION 6 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  7. CASE 1 Working conditions Buffer charging by heat pump T6.1 C6 C2 PM1_1 C1 PV_PHOTOVOLTAIC C5 HX_1 PM2_2 STC_SOLAR THERMAL COLLECTORS PM2_4 VM1_5 T5.4 VM1_4 VM2_3 T5.3 T1.3 C1 C5 VM_2 0 C1 1 C5 200 l 1 0 C2 C6 DHW HX_2 1 T5.2 VM2_2 TES_SNS2 C3 C2 C6 0 C5 1 VD_1 PM2_3 0 C3 out C4 TES_SNS3 A/W HEAT PUMP TES_SNS5 VM1_6 T5.5 TES_THERMAL 1 ENERGY STORAGE C5 C1 0 C2 C6 PM1_5 C4 C6 BUF_SNS1 EH6 C2 VM VM1_7 T5.6 1 C1 BUF_SNS5 C5 C1 0 C6 BUF_BUFFER C2 PM1_6 HJ_HYDRAULIC JUNCTION 7 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  8. CASE 1 Working conditions Buffer charging by solar energy T6.1 C6 C2 PM1_1 PV_PHOTOVOLTAIC C1 C5 HX_1 PM2_2 STC_SOLAR THERMAL COLLECTORS PM2_4 VM1_5 T5.4 VM1_4 T1.3 VM2_3 T5.3 VM_2 C1 C5 0 C1 1 C5 200 l 1 0 C2 C6 DHW HX_2 1 T5.2 TES_SNS2 VM2_2 C3 C2 C6 0 C5 1 VD_1 PM2_3 0 C3 out C4 TES_SNS3 A/W HEAT PUMP TES_SNS5 VM1_6 TES_THERMAL T5.5 1 ENERGY STORAGE C5 C1 0 C2 C6 PM1_5 C4 C6 BUF_SNS1 C2 VM VM1_7 T5.6 1 C1 BUF_SNS5 C5 C1 0 C2 C6 BUF_BUFFER PM1_6 HJ_HYDRAULIC JUNCTION 8 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  9. CASE 1 Working conditions DHW distribution T6.1 C6 C2 PM1_1 C1 C5 HX_1 PV_PHOTOVOLTAIC PM2_2 STC_SOLAR THERMAL COLLECTORS PM2_4 VM1_5 T5.4 VM1_4 T1.3 VM2_3 VM_2 C1 C5 0 C1 1 C5 200 l 1 0 C2 C6 DHW HX_2 TES_SNS2 1 T5.2 VM2_2 0 C2 C6 1 C3 VD_1 C5 C3 out C4 TES_SNS3 PM2_3 0 A/W HEAT PUMP TES_SNS5 VM1_6 TES_THERMAL T5.5 1 ENERGY STORAGE C5 C1 0 C2 C6 PM1_5 C4 C6 BUF_SNS1 C2 VM1_7 T5.6 1 C5 C1 C1 0 C2 C6 BUF_BUFFER PM1_6 HJ_HYDRAULIC JUNCTION 9 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  10. T6.1 PV_PHOTOVOLTAIC STC_SOLAR THERMAL COLLECTORS T5.4 T1.3 DHW T5.2 RESULTS – CASE 1 GENERATION DEVICE TES_THERMAL T5.5 ENERGY STORAGE DISTRIBUTION DEVICES T5.6 ST and PV performance with varying field size and tilt angle BUF_BUFFER HJ_HYDRAULIC JUNCTION Solar Thermal Solar Thermal Collectors - s-MFH Unit s-MFH 40% 700 STC_1 m² 18.4 Stagnation number hours [h] 35% 600 STC_2 m² 27.6 Solar Fraction [%] 30% 500 STC_3 m² 36.8 25% 400 20% 300 15% 200 10% 100 5% 0% 0 30° 90° 30° 90° STC_1 STC_1 STC_3 STC_3 SF_ROM SF_STO Hour_ROM Hour_STO ROM – Rome Solar Fraction and stagnation hours referred STO - Stockholm to the total heating production ( space heating + DHW ) 10 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  11. T6.1 PV_PHOTOVOLTAIC STC_SOLAR THERMAL COLLECTORS T5.4 T1.3 DHW T5.2 RESULTS – CASE 1 GENERATION DEVICE TES_THERMAL T5.5 ENERGY STORAGE DISTRIBUTION DEVICES T5.6 ST and PV performance with varying field size and tilt angle BUF_BUFFER HJ_HYDRAULIC JUNCTION Solar Thermal PV production - s-MFH Solar Thermal Collectors - s-MFH Unit s-MFH 10000 40% 700 STC_1 m² 18.4 Stagnation number hours [h] 8000 35% 600 Energy [kWh] STC_2 m² 27.6 Solar Fraction [%] 30% 500 6000 STC_3 m² 36.8 25% 400 4000 20% 300 15% Photovoltaic 2000 200 10% Unit s-MFH 100 5% 0 PV_1 kWp 3 0% 0 30° 90° 30° 90° 30° 90° 30° 90° PV_2 kWp 4 30° 90° 30° 90° ROM_3 kW ROM_5 kW STO_3 kW STO_5 kW PV_3 kWp 5 STC_1 STC_1 STC_3 STC_3 PV self HVAC PV self other PV to the grid SF_ROM SF_STO Hour_ROM Hour_STO ROM – Rome Solar Fraction and stagnation hours referred PV production and self-consumption for two STO - Stockholm to the total heating production ( space heating different fields size and panel slope + DHW ) 11 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  12. T6.1 PV_PHOTOVOLTAIC STC_SOLAR THERMAL COLLECTORS T5.4 T1.3 DHW T5.2 RESULTS – CASE 1 GENERATION DEVICE TES_THERMAL T5.5 ENERGY STORAGE DISTRIBUTION DEVICES T5.6 ST and PV performance for different sizes and slopes BUF_BUFFER HJ_HYDRAULIC JUNCTION ROM – Rome STO – Stockholm Electricity consumption - s-MFH 40 35 20% 23% Final Energy [kWh/(m²y)] 30 14% 14% • Slightly higher energy savings in Southern 25 20 climates due to higher cooling loads 15 • Same energy savings for a solar thermal 10 (STC) or photovoltaic (PV) field in Northern 5 climates 0 NO_ST_PV STC_2 PV_1 NO_ST_PV STC_2 PV_1 ROME STOCKHOLM Comparison of similar field areas of STC ( 27 m² ) or PV ( 24 m² ) in terms of electric energy savings for DHW, heating and cooling uses 12 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  13. CASE 2 Building description Wooden Residential Building (WRB) Number of floors 2 Living area per floor 130 m² 13 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  14. CASE 2 Solar cooling plant layout • Adsorption chiller for space cooling; • Solar collectors (CPC) for heating and DHW demands • Heat rejection through dry-cooler. 1. Compound Parabolic Collectors (CPC) 2. Storage tank – 1000 l 3. Electric Heater 4. Adsorption chiller – 10 kW 5. Dry cooler 6. Fan coil 14 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  15. CASE 2 Working conditions Running the solar system 15 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  16. CASE 2 Working conditions Space cooling mode < 16 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  17. CASE 2 Working conditions Running the back-up heater 17 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  18. CASE 2 Working conditions Domestic Hot Water and space heating 18 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

  19. RESULTS – CASE 2 Absorption chiller in different climates # solar SPF heating SPF cooling SF total PER total collectors [-] [-] [%] [-] Freiburg 6 6.7 5.2 51% 1.2 • The highest SF is in Marseille where Stuttgart 6 9.5 7.9 56% 1.3 heating and cooling demands are similar; Marseille 6 11.6 9.6 92% 1.9 Messina 8 14.8 12.3 67% 2 Luca 8 14.3 13.0 66% 2 Athens 8 10.4 10.9 69% 2.4 Barcelona 8 12.9 11.7 73% 2.4 Almeria 8 10.7 11.8 66% 1.9 Larnaca 10 11.9 12.7 63% 2.1 19 Chiara Dipasquale – Modelling results on New Generation Solar Cooling systems

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend