modeling improvement
play

Modeling Improvement Mingyang Li Department of Industrial and - PowerPoint PPT Presentation

Bayesian Data Analytics for Reliability Modeling Improvement Mingyang Li Department of Industrial and Management Systems Engineering University of South Florida Jan 26 st , 2018 M. Li DSSI Laboratory M. Li 2 Outline Background


  1. Bayesian Data Analytics for Reliability Modeling Improvement Mingyang Li Department of Industrial and Management Systems Engineering University of South Florida Jan 26 st , 2018 M. Li

  2. DSSI Laboratory M. Li 2

  3. Outline • Background • Part I - Multi-level Data Fusion • Part II - Heterogeneous Data Quantification • Summary M. Li 3

  4. Data Analytics Bayesian Statistics Statistics & Math Data Data Analytics Analytics • Focus: Bayesian Data Analytics for Reliability Modeling Improvement M. Li 4

  5. Key Word: Bayesian • Parameter Learning Classic Statistics Bayesian Statistics ? Data Parameters Data Posterior Parameters Limited Data or No Data Prior • External data sources • Domain knowledge • Non-informative prior Flexible & Coherent …… Methodology I: Multi-level Data Fusion M. Li 5

  6. Key Word: Bayesian (Cont’d) • Model Learning Classic Statistics Bayesian Statistics Model 1 Data Posterior Parameters Data Parameters & Model Model m Para. Prior Model Prior Data Parameters Efficient & Effective • Underfitting/Overfitting Methodology II: • Inefficient Heterogeneity Quantification M. Li 6

  7. Key Word: Reliability Modeling • Reliability: product quality over time [1] Pr(T>t) Time-to-failure • Reliability modeling Product Sample: Reliability Data: t 2 t 4 t 1 t 5 Modeling T t 0 • Data Feature • • Non-negative and asymmetric Censoring s 2 t s 1 • • Covariates Others: availability , heterogeneity , etc. M. Li 7

  8. Lifecycle View of Reliability Modeling Requirements Marketing Functional Maintenance Relationship policy Design and Reliability Maintenance Development Modeling Repair Logs Evaluation, allocation, etc. Production Testing M. Li 8

  9. Part I - Multi-level Data Fusion: Bayesian Multi-level Information Aggregation for Hierarchical Systems Reliability Modeling Improvement M. Li 9

  10. Vision EEG / MEG ( high-temporal-resolution ) [3] Heating Ventilating & Air-Conditioning Brain (HVAC) System [2] Crowd Surveillance System [4] fMRI (high-spatial-resolution) [3] Data-rich Environment: Unmanned Data Fusion Unmanned Aerial Ground Vehicle Vehicle(UAV) (UGV) Crowd M. Li 10

  11. Focus: System Reliability • Performance index : system reliability • Modeling Challenges: • Expensive system-level tests • Scarce/absent engineering knowledge Missile • Complex failure relationship ($10 3 k - $10m) • High requirement on reliability assessment • Research Goal: Improve system-level reliability modeling by utilizing all reliability information throughout the system in a systematic and coherent manner. M. Li 11

  12. Opportunity I: Hierarchical System Structure Electro-Mechanical-Actuator (EMA) System Power Supply (PS) Actuator Servo Drive (ASD) DC Motor Elements in Divide & Conquer System Hierarchy EMA System PS Sub-system ASD Sub-system Motor Logic PS Controller Bridge DC Motor PS M. Li 12

  13. Opportunity II: Multi-source Multi-level Data • Multi-source reliability information : prior knowledge (e.g., domain knowledge, historical studies, etc.) + ongoing reliability test data. Elements Prior knowledge Reliability Test Data Lower-level Familiar (1) Abundant (2) Limited but easy to collect Upper-level Unfamiliar or unknown (1) Absent (2) Limited and/or expensive/hard to collect • Multi-level information imbalance Aggregation Reliability Information: Prior knowledge Reliability test data Absent information M. Li 13

  14. State of the Art Methodology System Reliability Modeling Summary Parametric Semi-parametric/non- methods parametric methods Ramamoorty [5] , Camarda et al . [6] , Cui Klein and Moeschberger [13] , Meeker Multi-level No et al . [7] , Hoyland and Rausand [8] , and Escobar (Chapter 3) [14] , Ibrahim information Coit [9] , Jin and Coit [10] , Martz and et al . [15] aggregation Walker [11] , Hamada et al . [12] , etc. Martz et al . [16] , Martz and Walker [17] , Yes To be presented Hulting and Robinson [18] • Features of the proposed model: • Failure-time data with covariates and censoring • Semi-parametric modeling • Information aggregation from lower levels M. Li 14

  15. Overview of the Proposed Work Upward Recursively Posterior of X ( l- 1,1) Step 1 Combined Prior of X ( l- 1,1) Data of X ( l- 1,1) Step 4 X  ( 1,1) l Native Prior of X ( l- 1,1) Induced Prior of X ( l- 1,1) Step 3 Aggregated posterior of X ( l- 1,1) Step 2 Posterior of X ( l ,2) Posterior of X ( l ,1) X X ( ,2) l ( ,1) l Step 1 Step 1 Data of X ( l ,1) Prior of X ( l ,1) Data of X ( l ,2) Prior of X ( l ,2) M. Li 15

  16. Modeling of Individual Element Unique Proportion Hazard Model (PHM):  Reliability: ( ) ( ) R t H t X ( , ) ( , ) l k l k ( , ) l k    β T b ( ) ( )exp H t H t u Covariate ( , ) ( , ) ( , ) ( , ) l k l k l k l k Covariate Cumulative Baseline cumulative coefficient hazard function hazard function Gamma Process Prior: Multivariate Normal Prior:      ( ) ( ( ) , ) β Σ Z t G c t c ( ) ( , ) N 0 0 ( , ) ( , ) ( , ) l k l k l k l l l Confidence Mean function Mean vector Covariance matrix parameter Baseline cumulative hazard increments: Carry information     b ~ ( ( ( ) ( ) ), ) H Gamma c s s c  , ( , ) 0 1 0 j l k j j for aggregation M. Li 16

  17. Aggregation Procedure: Step 1 • Step 1 – Compute the posterior (lower-level element):   Joint Posterior Likelihoods Joint Priors:         β β β b b b ( , | ) ( , | ) ( ) ( ) p H L H H ( , ) ,( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) l k j l k l k l k j l k l k l k j l k Prior knowledge Integration of Failure-time data with data and prior covariates and censoring X t 5 t 1 t 3 t 4 t 2 Example:  ( 1,1) l s 1 s 2 s 3 0 t n : the actual failure time stamp of test unit n Step 1 Bayesian PHM integrates the reliability prior X X ( ,1) l ( ,2) l knowledge and failure data M. Li 17

  18. Aggregation Procedure: Failure Relationship • Failure relationship between two levels: General Relationships      Q Reliability functions: ( ) ( ) , R t f R t    ( 1, ) ( , ) ( 1, ) l k l l k Baseline cumulative      Q A b b ( ), H g H    hazard increments: ,( 1, ) ,( , ) ( 1, ) j l k j l l k Example: Series configuration X  ( 1,1) l  A ( ) ( ) ( ) R t R t R t Aggregated  ( 1,1) ( ,1) ( ,2) l l l Step 2      A b b b ( ) ( ) ( ) H t H t H t X X  j l ( 1,1) j l ( ,1) j l ( ,2) ( ,1) l ( ,2) l  b Information is aggregated through based on failure H j relationships M. Li 18

  19. Aggregation Procedure: Steps 2-3 • Step 2 - Aggregate the posterior:      Aggregated posterior: A b b ( ), 1,2 H g H   ,( 1,1) ,( , ) j l j l  I b Induced prior: H  ,( 1,1) j l • Step 3 - Approximate the Step 3 induced prior:  A b Aggregated posterior: H  j l ,( 1,1)    Induced prior: I b A b H H   ,( 1,1) ,( 1,1) j l j l Step 2 X  Gamma    I b I I ( 1,1) l ~ ( , ) H    Posterior: Posterior: ,( 1,1) ,( 1,1) ,( 1,1) j l j l j l   b b H H ,( ,1) j l ,( ,2) j l (Validate by K-S goodness fitness test) X X ( ,2) l ( ,1) l M. Li 19

  20. Aggregation Procedure: Step 4 • Step 4 – Combine the native prior and the induced prior:    Combined prior: C b C C ~ ( , ) H Gamma    ,( 1,1) ,( 1,1) ,( 1,1) j l j l j l         C I N (1 ) Weighting factor: 0 1 w w w    ,( 1,1) ,( 1,1) ,( 1,1) j l j l j l       C I N (1 ) w w     b ,( 1,1) ,( 1,1) ,( 1,1) H j l j l j l Posterior:  j l ,( 1,1) Step 1 w : balance native prior and induced prior Ω Failure data: l  ( 1,1) • Step 1 – Compute the posterior  C b (higher-level element): Combined prior: H  ,( 1,1) j l Step 4 Similar Bayesian inference Native prior: Induced prior:  Gamma   C b C C ~ ( , ) H      ,( 1,1) ,( 1,1) ,( 1,1) N b I b j l j l j l H H   j l ,( 1,1) j l ,( 1,1) X  ( 1,1) l M. Li 20

  21. Information Aggregation: Procedure Review • Recursive • Flexible • Generic Aggregate Upward  b Posterior: H  Recursively ,( 1,1) j l Step 1 Ω  Failure data: Combined prior: C b H l   ( 1,1) j l ,( 1,1) Step 4 X    Induced prior: I b Native prior: N b ( 1,1) H H l   ,( 1,1) j l ,( 1,1) j l Step 3  Level l -1 Aggregated posterior: A b H  ,( 1,1) j l Step 2 X  Level l X  Posterior: A b Posterior: A b H H ( ,2) l ( ,1) l ,( ,2) ,( ,1) j l j l Step 1  Ω prior: C b Ω  Failure data: prior: C b H Failure data: H ( ,1) l ,( ,1) j l ( ,2) l j l ,( ,2) M. Li 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend