modeling and simulation the stable stratified boundary
play

Modeling and simulation the stable stratified boundary layer with - PowerPoint PPT Presentation

Modeling and simulation the stable stratified boundary layer with low-level jet: comparison with the wind tunnel data. L. I. Kurbatskaya Inst stit itute of Comp mputatio ional l Ma Mathema matics ics and Ma Mathema matica ical l


  1. Modeling and simulation the stable stratified boundary layer with low-level jet: comparison with the wind tunnel data. L. I. Kurbatskaya Inst stit itute of Comp mputatio ional l Ma Mathema matics ics and Ma Mathema matica ical l Geophysics ysics of Russia ssian Aca Academy my of Scie Science ces, s, Sib Siberia rian Bra Branch ch, Russia ssia

  2. Exp Experime rimental l arra rrangeme ment for r SBL SBL wit ith lo low- le leve vel l je jet

  3. ¡ ¡ ¡ Modeling of turbulent stresses and turbulent heat fluxes Turbulence equations 1) Traceless Reynolds stress tensor b u u (2 / 3) E = 〈 〉 − δ ij i j ij D b 4 D ES Z B П + = − − Σ − + − ij ij ij ij ij ij ij Dt 3 2) Turbulent kinetic energy 2 E u / 2 = 〈 〉 i DE 1 U ∂ i D h + = − τ + β − ε ii ij i i Dt 2 x ∂ j

  4. ¡ ¡ ¡ Modeling of turbulent stresses and turbulent heat fluxes 3) Turbulent heat fluxes h u = 〈 θ 〉 i i D h U ∂ ∂ Θ h 2 i θ D h П + = − − τ + β θ 〈 〉 − i i j ij i i Dt x x ∂ ∂ j j 2 4) Temperature variance 〈 Θ 〉 D ∂ Θ 2 D 2 h 2 〈 θ 〉 + = − − ε i θ θ Dt x ∂ i

  5. The other tensors are defined as follows: U 1 U ⎛ ⎞ ∂ ∂ j S i = + ⎜ ⎟ ij ⎜ ⎟ 2 x x ∂ ∂ ⎝ ⎠ j i U 1 ⎛ U ⎞ ∂ ∂ j R i = − ⎜ ⎟ ij ⎜ ⎟ 2 x x ∂ ∂ ⎝ ⎠ j i 2 b S S b b S Σ = + − δ ij ik kj ik kj ij km mk 3 Z R b b R = − ij ik kj ik kj 2 B h h h = β + β − δ β ij i j j i ij k k 3 p p 2 ∂ ∂ П u u pu ≡ 〈 〉 + 〈 〉 − δ 〈 〉 ij i j ij k x x 3 ∂ ∂ j i ∂ ( ) D u u ( 1 / 3 )u u u ≡ 〈 − δ 〉 ij i j i i i j k x ∂ k

  6. The pressure-shear /scalar correlations The parameterization of ‘slow’ terms 2 П u p , u p , u p , = 〈 〉 + 〈 〉 − δ 〈 〉 ij i j j i ij k k 3 θ П p , = 〈 θ 〉 i i (1) (1) : : θ П b / , П h / τ τ ij ij i i p θ E / τ = ε c ∂ θ (1) 1 θ П p h θ ≡ 〈 〉 ≅ − i i x ∂ τ i p θ : τ τ p θ

  7. New dependence for the pressure correlation in the stably stratified turbulence θ p Π Π = θ θ i , i u θ θ p i Π Π = θ θ Relaxation linear model for the slow term : � i , i τ p θ ‘Standard’ the SOC models usually assume, that 2 E τ p τ = � θ ε Such closure may not necessarily apply to the stably stratified flows! Because we use the original theoretical work of Weinstock (1989), τ p pointed out that the time scale must include a buoyancy damping θ factor τ τ = ‘Weinstock’s damping factor ’ p θ 2 2 1 a N + τ

  8. RAN ANS-a S-appro roach ch for r turb rbule lent st stra ratif ifie ied flo lows U W ∂ ∂ 0, + = x z ∂ ∂ 2 U U U 1 P u uw ∂ ∂ ∂ ∂ ∂〈 〉 ∂〈 〉 U W D , + + = − − − + u t x z x x z ∂ ∂ ∂ ρ ∂ ∂ ∂ 0 W W W 1 P U W ∂ ∂ ∂ ∂ ∂ ∂ 0, + = U W x z + + = − − ∂ ∂ t x z z ∂ ∂ ∂ ρ ∂ 0 2 uw w ∂〈 〉 ∂〈 〉 g , − + β Θ x z ∂ ∂ u w ∂Θ ∂Θ ∂Θ ∂〈 θ 〉 ∂〈 θ 〉 U W . + + = − − t x z x z ∂ ∂ ∂ ∂ ∂

  9. Three parameter turbulence model E E E E U ⎛ ⎞ ∂ ∂ ∂ ∂ ∂ i U c u u u u g u + = 〈 〉 −〈 〉 + β δ 〈 θ〉 − ε ⎜ ⎟ k E k k i k i 3 i t x x x x ∂ ∂ ∂ ε ∂ ∂ ⎝ ⎠ k k k k 2 E U ⎛ ⎞ ⎛ ⎞ ∂ε ∂ε ∂ ∂ε ε ∂ ε i U c u u c u u g u c + = 〈 〉 + −〈 〉 + β δ 〈 θ〉 − ⎜ ⎟ ⎜ ⎟ k k k 1 i k i 3 i 2 ε ε ε t x x x E x E ∂ ∂ ∂ ε ∂ ∂ ⎝ ⎠ ⎝ ⎠ k k k k 2 2 2 E 1 ⎛ ⎞ ∂〈θ 〉 ∂〈θ 〉 ∂ ∂〈θ 〉 ∂Θ ε 2 U c u u u + = 〈 〉 −〈 θ〉 − 〈θ 〉 ⎜ ⎟ k 2 k k k θ t x x x x R E ∂ ∂ ∂ ε ∂ ∂ k k ⎝ k ⎠ k c 0 22 , ,c 0 18 , ,c 1 40 , ,c 1 90 , ,c 0 22 , ,R 0 6 , ( ) = = = = = = E 1 2 2 ε ε ε θ

  10. Improved Full Explicit Algebraic Models for Reynolds Stresses and Scalar Fluxes : 2D case K E S U V = τ ∂ ∂ ⎛ ⎞ E M M uw , vw K , ( ) < > < > = − τ = ⎜ ⎟ M z z K E S ε ∂ ∂ = τ ⎝ ⎠ H H ∂Θ 1 2 w K ⎧ ⎫ < θ >= − + γ 2 2 1 G s G ( g ) γ = + α + α τβ 〈θ 〉 ⎨ ⎬ H c c 2 M 6 H 5 z D 3 ∂ ⎩ ⎭ 2 2 ∂Θ U V 2 2 ∂ ∂ ⎛ ⎞ ⎛ ⎞ 2 G N G S N g ( ) ( ) 2 ≡ τ ≡ τ = β S ≡ + ⎜ ⎟ ⎜ ⎟ H M z ∂ z z ∂ ∂ ⎝ ⎠ ⎝ ⎠ s 1 s G s s G s s 1 2 1 1 ( ) ⎧ ⎫ + − + × ⎧ ⎫ ⎡ ⎤ 1 ⎣ ⎦ ⎪ ⎪ 0 1 H 2 3 H 4 5 S s G ( ) = + S = ⎨ ⎬ ⎨ ⎬ H 6 H * M D 3 c θ D ( 2 ) 1 s G g / E ( ) × + τβ 〈θ 〉 ⎩ ⎭ ⎪ ⎪ 1 6 H ⎩ ⎭ 2 2 D 1 d G d G d G G d G ( d G d G G ) G = + + + + + − 1 M 2 H 3 M H 4 H 5 H 6 M H H

  11. Vertical profiles of mean temperature

  12. Vertical profiles of mean U velocity 0.7 0.6 0.5 0.4 Z (m) Ohya's data 0.3 S1 (U=1.50 m/s) Ohya's data S2 (U=1.20 m/s) 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 -1 ) U (ms

  13. Vertical profiles of velocity fluctuations

  14. Turbulent Prandtl number as function of Richardson number 1.5 2 1.4 1.3 1 1.2 1.1 Pr T 1 0.9 0.8 0.7 0.6 -1 0 1 2 10 10 10 10 Ri g

  15. Time history of gradient Richardson number ∂Θ g z β ∂ é Ri = g 2 U ⎛ ⎞ ∂ ⎜ ⎟ z ∂ ê ⎝ ⎠

  16. Thermal Stratified Boundary Layer over Flat Terrain T he potential temperature θ and velocity U are shown for the convective and stable boundary layers.

  17. Velocity profile in SBL with Low-Level Jet 0.4 -1 U G =8 ms 0.35 simulation 0.3 LES data 0.25 (Beare et al. 2005) z ,km 0.2 0.15 0.1 0.05 0 4 5 6 7 8 9 10 -1 ) U (m s

  18. The potential temperature in the SSBL 0.4 The ¡surface ¡temperature ¡(265 ¡K ¡ ini5ally) ¡decreasing ¡at ¡a ¡constant ¡ initial profile rate ¡of ¡0.05 ¡K/h. ¡ ¡Such ¡a ¡profile ¡ 0.3 Measurements: developed ¡into ¡the ¡observed ¡ BASE data z (km) simulation profile ¡(square ¡symbols ¡at ¡the ¡ leD ¡on ¡a ¡figure) ¡aDer ¡8 ¡h ¡of ¡ 0.2 simula5on. ¡ ¡ ¡ The ¡elevated ¡inversion ¡layer ¡within ¡the ¡ 0.1 SBL, ¡similar ¡to ¡the ¡ones ¡here, ¡have ¡been ¡ found ¡by ¡Kosovic ¡and ¡Carry ¡(2000) ¡on ¡ the ¡Arc5c ¡sea ¡in ¡their ¡LES ¡simula5ons . 0 260 265 270 [K] Θ

  19. Model results for total horizontal wind speed 400 Time variation of the total horizontal wind speed . 12:00 ê The ground temperature was 300 24:00 specified as (x,0,t) 6 sin( t/43200) Θ = ⋅ π z m 200 This is the only nonstationary boundary condition of the problem, which models the 12- hour cycle of solar heating of the 100 Earth's surface with decreasing at a constant rate of 0.6 K/h. 3 4 5 6 7 8 9 10 U m/sec

  20. Time variation of total horizontal wind speed • Observations data • Modeling results 10 10 9 9 8 8 123 M 121 M 7 7 -1 -1 U , ms U , ms 6 6 5 5 4 4 2 M 3.125 M 3 3 2 2 0 5 10 15 20 25 5 10 15 20 25 Time, hours Time, hours

  21. THANK YOU!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend