modeling and analysis of hybrid systems
play

Modeling and Analysis of Hybrid Systems Erika brahm RWTH Aachen - PowerPoint PPT Presentation

Modeling and Analysis of Hybrid Systems Erika brahm RWTH Aachen University, Germany Beijing, September 2013 Contents 1 Modeling 2 Reachability analysis 3 Counterexample generation Erika brahm - Modeling and Analysis of Hybrid Systems 1


  1. Modeling and Analysis of Hybrid Systems Erika Ábrahám RWTH Aachen University, Germany Beijing, September 2013

  2. Contents 1 Modeling 2 Reachability analysis 3 Counterexample generation Erika Ábrahám - Modeling and Analysis of Hybrid Systems 1 / 28

  3. Contents 1 Modeling 2 Reachability analysis 3 Counterexample generation Erika Ábrahám - Modeling and Analysis of Hybrid Systems 2 / 28

  4. Modeling with hybrid automata Thermostat example x ≥ 22 ℓ on ℓ off x = 20 x = K ( h − x ) ˙ x = − Kx ˙ x ≤ 23 x ≥ 17 x ≤ 18 Erika Ábrahám - Modeling and Analysis of Hybrid Systems 3 / 28

  5. Some interesting subclasses of hybrid automata subclass derivatives conditions bounded unbounded reachability reachability timed automata x = 1 ˙ decidable decidable x ∼ c initialized x ∈ [ c 1 , c 2 ] ˙ x ∼ [ c 1 , c 2 ] decidable decidable rectangular automata reset by derivative change linear hybrid automata I x = c ˙ x ∼ g linear ( � x ) decidable undecidable linear hybrid automata II x = f linear ( � ˙ x ) x ∼ g linear ( � x ) undecidable undecidable general hybrid automata x = f ( � ˙ x ) x ∼ g ( � x ) undecidable undecidable [Henzinger et al., 1998] Erika Ábrahám - Modeling and Analysis of Hybrid Systems 4 / 28

  6. Contents 1 Modeling 2 Reachability analysis 3 Counterexample generation Erika Ábrahám - Modeling and Analysis of Hybrid Systems 5 / 28

  7. Some tools Uppaal [Behrmann et al., 2004] HyTech [Henzinger et al., 1997] PHAVer [Frehse, 2005] SpaceEx [Frehse et al., 2011] d/dt [Asarin et al., 2002] Ellipsoidal toolbox [Kurzhanski et al., 2006] MATISSE [Girard et al., 2007] Multi-Parametric Toolbox [Kvasnica et al., 2004] Flow ∗ [Chen et al., 2012] Erika Ábrahám - Modeling and Analysis of Hybrid Systems 6 / 28

  8. The two most popular techniques for reachability analysis Given: hybrid automaton + set of unsafe states Iterative forward/backward search Abstraction Erika Ábrahám - Modeling and Analysis of Hybrid Systems 7 / 28

  9. Iterative forward search Erika Ábrahám - Modeling and Analysis of Hybrid Systems 8 / 28

  10. Iterative forward search We need a (possibly over-approximative) state set representation and operations on them like intersection, union, linear transformation and Minkowski sum. Erika Ábrahám - Modeling and Analysis of Hybrid Systems 8 / 28

  11. Iterative forward search We need a (possibly over-approximative) state set representation and operations on them like intersection, union, linear transformation and Minkowski sum. The representation is crucial for the representation size, efficiency and accuracy. Erika Ábrahám - Modeling and Analysis of Hybrid Systems 8 / 28

  12. Iterative forward search We need a (possibly over-approximative) state set representation and operations on them like intersection, union, linear transformation and Minkowski sum. The representation is crucial for the representation size, efficiency and accuracy. Erika Ábrahám - Modeling and Analysis of Hybrid Systems 8 / 28

  13. Minkowski sum x 2 x 2 x 2 P ⊕ Q 3 3 3 P 2 ⊕ 2 2 = Q 1 1 1 0 0 0 x 1 x 1 x 1 1 2 3 1 2 3 1 2 3 P ⊕ Q = { p + q | p ∈ P and q ∈ Q } Erika Ábrahám - Modeling and Analysis of Hybrid Systems 9 / 28

  14. Most well-known state set representations Geometric objects: hyperrectangles [Moore et al., 2009] oriented rectangular hulls [Stursberg et al., 2003] convex polyhedra [Ziegler, 1995] [Chen at el, 2011] orthogonal polyhedra [Bournez et al., 1999] template polyhedra [Sankaranarayanan et al., 2008] ellipsoids [Kurzhanski et al., 2000] zonotopes [Girard, 2005]) Other symbolic representations: support functions [Le Guernic et al., 2009] Taylor models [Berz and Makino, 1998, 2009] [Chen et al., 2012] Erika Ábrahám - Modeling and Analysis of Hybrid Systems 10 / 28

  15. Example: Polytopes Erika Ábrahám - Modeling and Analysis of Hybrid Systems 11 / 28

  16. Example: Polytopes Halfspace: set of points satisfying l · x ≤ z Erika Ábrahám - Modeling and Analysis of Hybrid Systems 11 / 28

  17. Example: Polytopes Halfspace: set of points satisfying l · x ≤ z l 1 Erika Ábrahám - Modeling and Analysis of Hybrid Systems 11 / 28

  18. Example: Polytopes Halfspace: set of points satisfying l · x ≤ z Polyhedron: an intersection of finitely many halfspaces l 1 Erika Ábrahám - Modeling and Analysis of Hybrid Systems 11 / 28

  19. Example: Polytopes Halfspace: set of points satisfying l · x ≤ z Polyhedron: an intersection of finitely many halfspaces l 3 l 2 l 1 Erika Ábrahám - Modeling and Analysis of Hybrid Systems 11 / 28

  20. Example: Polytopes Halfspace: set of points satisfying l · x ≤ z Polyhedron: an intersection of finitely many halfspaces Polytope: a bounded polyhedron l 3 l 2 l 1 Erika Ábrahám - Modeling and Analysis of Hybrid Systems 11 / 28

  21. Example: Polytopes Halfspace: set of points satisfying l · x ≤ z Polyhedron: an intersection of finitely many halfspaces Polytope: a bounded polyhedron l 3 l 2 l 4 l 1 Erika Ábrahám - Modeling and Analysis of Hybrid Systems 11 / 28

  22. Example: Polytopes Halfspace: set of points satisfying l · x ≤ z Polyhedron: an intersection of finitely many halfspaces Polytope: a bounded polyhedron Erika Ábrahám - Modeling and Analysis of Hybrid Systems 11 / 28

  23. Example: Polytopes Halfspace: set of points satisfying l · x ≤ z Polyhedron: an intersection of finitely many halfspaces Polytope: a bounded polyhedron representation union intersection Minkowski sum V -representation by vertices easy hard easy H -representation by facets hard easy hard Erika Ábrahám - Modeling and Analysis of Hybrid Systems 11 / 28

  24. Linear hybrid automata I: Time evolution Erika Ábrahám - Modeling and Analysis of Hybrid Systems 12 / 28

  25. Linear hybrid automata I: Time evolution x 2 P 0 x 1 Erika Ábrahám - Modeling and Analysis of Hybrid Systems 12 / 28

  26. Linear hybrid automata I: Time evolution x 2 P 0 x 1 x 2 ˙ Q 0 x 1 ˙ Erika Ábrahám - Modeling and Analysis of Hybrid Systems 12 / 28

  27. Linear hybrid automata I: Time evolution x 2 P 0 x 1 x 2 ˙ cone ( Q ) 0 x 1 ˙ Erika Ábrahám - Modeling and Analysis of Hybrid Systems 12 / 28

  28. Linear hybrid automata I: Time evolution x 2 P 0 x 1 x 2 ˙ cone ( Q ) 0 x 1 ˙ Erika Ábrahám - Modeling and Analysis of Hybrid Systems 12 / 28

  29. Linear hybrid automata I: Time evolution x 2 x 2 P 0 0 x 1 x 1 x 2 ˙ cone ( Q ) 0 x 1 ˙ Erika Ábrahám - Modeling and Analysis of Hybrid Systems 12 / 28

  30. Linear hybrid automata I: Time evolution P ⊕ cone ( Q ) x 2 x 2 P 0 0 x 1 x 1 x 2 ˙ cone ( Q ) 0 x 1 ˙ Erika Ábrahám - Modeling and Analysis of Hybrid Systems 12 / 28

  31. Linear hybrid automata I: Time evolution P ⊕ cone ( Q ) x 2 x 2 P 0 0 x 1 x 1 x 2 ˙ cone ( Q ) 0 x 1 ˙ Erika Ábrahám - Modeling and Analysis of Hybrid Systems 12 / 28

  32. Linear hybrid automata I: Time evolution P ⊕ cone ( Q ) x 2 x 2 P 0 0 x 1 x 1 x 2 ˙ cone ( Q ) 0 x 1 ˙ Erika Ábrahám - Modeling and Analysis of Hybrid Systems 12 / 28

  33. Linear hybrid automata I: Time evolution P ⊕ cone ( Q ) x 2 x 2 P 0 0 x 1 x 1 x 2 ˙ cone ( Q ) 0 x 1 ˙ Erika Ábrahám - Modeling and Analysis of Hybrid Systems 12 / 28

  34. Linear hybrid automata I: Time evolution ( P ⊕ cone ( Q )) ∩ Inv ( ℓ ) x 2 x 2 P 0 0 x 1 x 1 x 2 ˙ cone ( Q ) 0 x 1 ˙ Erika Ábrahám - Modeling and Analysis of Hybrid Systems 12 / 28

  35. Linear hybrid automata I: Discrete steps (jumps) x 2 0 x 1 ℓ Erika Ábrahám - Modeling and Analysis of Hybrid Systems 13 / 28

  36. Linear hybrid automata I: Discrete steps (jumps) x 2 5 4 0 x 1 ℓ Erika Ábrahám - Modeling and Analysis of Hybrid Systems 13 / 28

  37. Linear hybrid automata I: Discrete steps (jumps) x 2 x 2 5 4 x 1 0 x 1 0 ℓ ′ ℓ Erika Ábrahám - Modeling and Analysis of Hybrid Systems 13 / 28

  38. Linear hybrid automata I: Discrete steps (jumps) x 2 x 2 5 4 x 1 0 x 1 0 ℓ ′ ℓ Erika Ábrahám - Modeling and Analysis of Hybrid Systems 13 / 28

  39. Linear hybrid automata I: Discrete steps (jumps) x 2 x 2 5 4 4 2 x 1 0 x 1 0 ℓ ′ ℓ Erika Ábrahám - Modeling and Analysis of Hybrid Systems 13 / 28

  40. Linear hybrid automata I: Discrete steps (jumps) x 2 x 2 5 4 4 2 x 1 0 x 1 0 ℓ ′ ℓ Erika Ábrahám - Modeling and Analysis of Hybrid Systems 13 / 28

  41. Linear hybrid automata I: Discrete steps (jumps) x 2 x 2 5 4 4 2 x 1 0 x 1 0 ℓ ′ ℓ Computed via projection and Minkowski sum. Erika Ábrahám - Modeling and Analysis of Hybrid Systems 13 / 28

  42. Linear hybrid automata II: Time evolution Erika Ábrahám - Modeling and Analysis of Hybrid Systems 14 / 28

  43. Linear hybrid automata II: Time evolution Assume ˙ x = Ax + Bu Erika Ábrahám - Modeling and Analysis of Hybrid Systems 14 / 28

  44. Linear hybrid automata II: Time evolution Assume ˙ x = Ax + Bu R [0 ,δ ] R [ δ, 2 δ ] R [2 δ, 3 δ ] Erika Ábrahám - Modeling and Analysis of Hybrid Systems 14 / 28

  45. Linear hybrid automata II: Time evolution Assume ˙ x = Ax + Bu Compute Ω 0 , Ω 1 , . . . such that R [ iδ, ( i +1) δ ] ⊆ Ω i Ω 0 R [0 ,δ ] Ω 1 R [ δ, 2 δ ] Ω 2 R [2 δ, 3 δ ] Erika Ábrahám - Modeling and Analysis of Hybrid Systems 14 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend