model reduction methods
play

Model Reduction Methods Martin A. Grepl 1 , Gianluigi Rozza 2 1 IGPM, - PowerPoint PPT Presentation

Lecture 1 Model Reduction Methods Martin A. Grepl 1 , Gianluigi Rozza 2 1 IGPM, RWTH Aachen University, Germany 2 MATHICSE - CMCS, Ecole Polytechnique Fdrale de Lausanne, Switzerland Summer School "Optimal Control of PDEs" Cortona


  1. Lecture 1 Model Reduction Methods Martin A. Grepl 1 , Gianluigi Rozza 2 1 IGPM, RWTH Aachen University, Germany 2 MATHICSE - CMCS, Ecole Polytechnique Fédérale de Lausanne, Switzerland Summer School "Optimal Control of PDEs" Cortona (Italy), July 12-17, 2010 Grepl, Rozza Model Reduction Methods

  2. Lecture 1 Acknowledgements & Sponsors Acknowledgements A.T. Patera K. Veroy D. B. P. Huynh A. Manzoni C. N. Nguyen Sponsors ◮ AFOSR, DARPA ◮ Swiss National Science Foundation ◮ European Research Council ◮ Singapore-MIT Alliance ◮ Progetto Rocca Politecnico di Milano-MIT ◮ German Excellence Initiative Grepl, Rozza Model Reduction Methods

  3. Introduction/Motivation Lecture 1 Elliptic Problems I (coercive, affine, compliant) Focus Model Order Reduction by Reduced Basis Method for the efficient resolution of parametrized PDEs Examples in heat and mass transfer, linear elasticity, potential and viscous flows Some Pre-requisites Numerical Analysis, FEM, PDEs, Physical Mathematics Grepl, Rozza Model Reduction Methods

  4. Introduction/Motivation Lecture 1 Elliptic Problems I (coercive, affine, compliant) References and materials ( http://www.mat.uniroma1.it/cortona10/courses.html ): ◮ Rozza G., Huynh D.B.P., Patera A.T., Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Arch Comput Methods Eng (2008) 15: 229-275 ◮ Patera A.T., Rozza G., Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering, 2006–2010 ◮ Rozza G., Nguyen N.C., Huynh D.B.P., Patera A.T., Real-Time Reliable Simulation of Heat Transfer Phenomena, Proceedings of HT2009 ASME Summer Heat Transfer Conference, paper HT2009-88212 Links : ◮ http://augustine.mit.edu/methodology/methodology/.. _rbMIT_System.htm , Matlab Software, rbMIT (C)MIT Library ◮ http://augustine.mit.edu/methodology/methodology_book.htm First part of RB book, A.T. Patera, G. Rozza (C)MIT ◮ http://augustine.mit.edu/workedProblems.htm Worked problems, examples, Webserver (C)MIT Grepl, Rozza Model Reduction Methods

  5. Introduction/Motivation Lecture 1 Elliptic Problems I (coercive, affine, compliant) Outline ◮ Lecture 1: Motivation, Coercive Elliptic Problems 1. Introduction/Motivation (a) Notation and Examples (b) Goal/Relevance 2. Elliptic Problems I (coercive, affine, compliant) (a) Problem Statement, Truth Approximation, Affine Representation (b) Reduced Basis Approximation (c) Offline-Online Computational Procedures (d) Sampling/Spaces Strategies: POD, Greedy, ... Grepl, Rozza Model Reduction Methods

  6. Introduction/Motivation Lecture 1 Elliptic Problems I (coercive, affine, compliant) Outline ◮ Lecture 2: Elliptic Problems II, Parabolic Problems 1. Elliptic Problems II (e) A Posteriori Error Estimation (elements) (f) General Outputs (non-compliant), Non-symmetric Forms (Dual Problem, A Posteriori Error Estimation) 2. Parabolic Problems (a) Problem Statement, Truth Approximation (b) Reduced Basis Approximation (c) Offline-Online Computational Procedures (d) A Posteriori Error Estimation Grepl, Rozza Model Reduction Methods

  7. Introduction/Motivation Lecture 1 Elliptic Problems I (coercive, affine, compliant) Outline ◮ Lecture 3: Parabolic problems, Non-affine Problems, Software 1. Parabolic Problems (d) A Posteriori Error Estimation (e) Offline-Online Decomposition (f) POD/Greedy Sampling (g) NOn-symmetric problems 2. Non-Affine Problems (a) Empirical Interpolation Method (b) EIM + RB 3. Summary on Software: RB@MIT ◮ Lecture 4: Applied Talk 1. Optimization & Optimal Control ◮ Parameter Optimization, GMA Welding Process, Advection-Diffusion (Environmental and thermal) 2. Shape Optimization ◮ Potential, thermal, (Navier)-Stokes flows Grepl, Rozza Model Reduction Methods

  8. Introduction/Motivation Lecture 1 Elliptic Problems I (coercive, affine, compliant) Lecture 1 ◮ Lecture 1: Motivation, Coercive Elliptic Problems 1. Introduction/Motivation (a) Notation and Examples (b) Goal/Relevance 2. Elliptic Problems I (coercive, affine, compliant) (a) Problem Statement, Truth Approximation, Affine Representation (b) Reduced Basis Approximation (c) Offline-Online Computational Procedures (d) Sampling/Spaces Strategies: POD, Greedy, ... Grepl, Rozza Model Reduction Methods

  9. Introduction/Motivation Lecture 1 Elliptic Problems I (coercive, affine, compliant) Statement: simple elliptic µ PDEs R P , evaluate s e ( µ ) = ℓ ( u e ( µ )) † Given µ ∈ D ⊂ I where u e ( µ ) ∈ X e satisfies ∀ v ∈ X e . a ( u e ( µ ) , v ; µ ) = f ( v ) , µ : input parameter; P -tuple D : input domain; s e : output; ℓ : linear bounded output functional; u e : field variable; 0 (Ω)) ν ⊂ X e ⊂ ( H 1 (Ω)) ν ; X e : function space ( H 1 † Here e refers to “exact.” Grepl, Rozza Model Reduction Methods

  10. Introduction/Motivation Lecture 1 Elliptic Problems I (coercive, affine, compliant) Statement: hypotheses and definitions  a ( · , · ; µ ): bilinear,    continuous,     symmetric, µ PDE coercive form, ∀ µ ∈ D ;        f : linear bounded functional. Compliant case: l = f , a ( · , · ; µ ) symmetric Grepl, Rozza Model Reduction Methods

  11. Introduction/Motivation Lecture 1 Elliptic Problems I (coercive, affine, compliant) Statement: hypotheses and definitions ◮ a symmetric: a ( u, v ; µ ) = a ( v, u ; µ ) , ◮ a bilinear: a ( λu + γv, w ; µ ) = λa ( u, w ; µ ) + γa ( v, w ; µ ) , ∀ λ, γ ∈ R , ∀ u, v, w ∈ X e , or a ( u, λv + γw ; µ ) = λa ( u, v ; µ ) + γa ( u, w ; µ ) , ∀ λ, γ ∈ R , ∀ u, v, w ∈ X e , ◮ a continuous: | a ( u, v ; µ ) | ≤ M || u || X e || v || X e , ∀ u, v ∈ X e , ◮ a coercive: ∃ α > 0 : a ( u, u ; µ ) ≥ α e || u || 2 X e , ∀ u ∈ X e , ◮ f (and l ) bounded/continuous: | f ( v ) | ≤ C || v || X e , ∀ v ∈ X e , ◮ f linear: f ( γv + ηw ) = γf ( v ) + ηf ( w ) , ∀ γ, η ∈ R , v ∈ X e . Grepl, Rozza Model Reduction Methods

  12. Introduction/Motivation Lecture 1 Elliptic Problems I (coercive, affine, compliant) Statement: affine parameter dependence † Definition : Q � Θ q ( µ ) a q ( w, v ) a ( w, v ; µ ) = q =1 for q = 1 , . . . , Q Θ q : D → I µ -dependent functions R , X e × X e → I a q : µ - independent forms R . Stiffness matrix : Q � Θ q ( µ ) a q ( w a ( w , v ; µ ) = , v ) q =1 ζ j ζ i ζ j ζ i for q = 1 , . . . , Q † In fact, broadly applicable to many instances of geometry and property parametric variation. Grepl, Rozza Model Reduction Methods

  13. Introduction/Motivation Lecture 1 Elliptic Problems I (coercive, affine, compliant) Little example: heat conduction � 1 u e Given k I ∈ [0 . 1 , 10] , evaluate u e I ( k I ) = | Ω I | Ω I where u e ( k I ) ∈ H 1 0 (Ω) satisfies ( Q = 2 ) � � � ∇ u e · ∇ v + ∇ u e · ∇ v = v, ∀ v ∈ H 1 k I 0 (Ω) . Ω I Ω II Ω X N ≡ { v | T h ∈ I P I ( T h ) , ∀ T h ∈ T h } ∩ X e ; dim( X N ) ≡ N . Grepl, Rozza Model Reduction Methods

  14. Introduction/Motivation Lecture 1 Elliptic Problems I (coercive, affine, compliant) Classical Approximation: FEM (Galerkin projection) Given µ ∈ D , evaluate s N = ℓ ( u N ( µ )) , where u N ( µ ) ∈ X N satisfies ∀ v ∈ X N . a ( u N ( µ ) , v ; µ ) = f ( v ) , Typically: | s e ( µ ) − s N ( µ ) | small ⇒ N large . Surrogate for s e ( µ ) , u e ( µ ) : “truth” ◮ upon which we build reduced-basis approximation ; † ◮ relative to which we measure reduced-basis error . † † Require stability and efficiency as N → ∞ . Grepl, Rozza Model Reduction Methods

  15. Introduction/Motivation Lecture 1 Elliptic Problems I (coercive, affine, compliant) Reduced-Basis Approximation: basic idea † M e = parameter-induced manifold R P ) , very smooth) (low-Dimensional ( D ⊂ I Classical Approach X N ≡ { v | T h ∈ I P I ( T h ) , ∀ T h ∈ T h } ∩ X e ; dim( X N ) ≡ N . Reduced Basis Approach W N ≡ span { ζ n ≡ u N ( µ n ) , 1 ≤ n ≤ N } † Pioneering works by Almroth, Stern& Brogan (1978), Noor & Peters (1980). Grepl, Rozza Model Reduction Methods

  16. Introduction/Motivation Lecture 1 Elliptic Problems I (coercive, affine, compliant) Reduced-Basis Approximation: formulation Samples : S N = { µ 1 ∈ D , . . . , µ N ∈ D} Spaces : W N = span { ζ n ≡ u N ( µ n ) , 1 ≤ n ≤ N } µ ∈ D , Given evaluate s N ( µ ) = ℓ ( u N ( µ )) , u N ( µ ) ∈ W N satisfies where a ( u N ( µ ) , v ; µ ) = f ( v ) , ∀ v ∈ W N . Grepl, Rozza Model Reduction Methods

  17. Introduction/Motivation Lecture 1 Elliptic Problems I (coercive, affine, compliant) Reduced-Basis Approximation: convergence Classical arguments yield a ( u N ( µ ) − u N ( µ ) , u N ( µ ) − u N ( µ ); µ ) = w N ∈ W N a ( u N ( µ ) − w N , u N ( µ ) − w N ; µ ) inf Properties of M e suggest w N ∈ W N a ( u N ( µ ) − w N , u N ( µ ) − w N ; µ ) → 0 inf rapidly (exponentially): N small . Grepl, Rozza Model Reduction Methods

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend