model building and moduli stabilization with magnetized
play

Model building and moduli stabilization with magnetized branes - PDF document

I. Antoniadis CERN Model building and moduli stabilization with magnetized branes Outline Framework Standard Model embedding Moduli stabilization Oblique internal magnetic fields Supersymmetry breaking A new gauge mediation


  1. I. Antoniadis CERN Model building and moduli stabilization with magnetized branes

  2. Outline • Framework • Standard Model embedding • Moduli stabilization Oblique internal magnetic fields • Supersymmetry breaking A new gauge mediation mechanism

  3. General framework • Type I string theory compactified in 4d on 6d Calabi-Yau ⇒ N = 2 SUSY in the bulk, N = 1 on branes • Magnetic fluxes on 2-cycles ⇒ SUSY breaking nA ≡ p Dirac quantization: H = m A H : constant magnetic field m : units of magnetic flux n : brane wrapping A : area of the 2-cycle Spin-dependent mass shifts for all charged states [ p i , p j ] = iqHǫ ij q : charge ⇒ Landau spectrum

  4. Exact open string description: qH → θ = arctan qHα ′ weak field ⇒ field theory T-dual representation: branes at angles magnetized D9-brane wrapped on T 2 H = m 1 n R 1 R 2 T-duality: R 2 → α ′ /R 2 ≡ ˜ R 2 ⇒ D8-brane wrapped around a direction of angle θ in T 2 ˜ H = m R 2 = tan θ n R 1 ( m, n ): wrapping numbers around ( ˜ R 2 , R 1 ) m θ n

  5. Generic spectrum N coincident branes ⇒ U ( N ) a-stack տ endpoint transformation: N a or ¯ N a U (1) a charge: +1 or − 1 U (1): “baryon” number • open strings from the same stack ⇒ adjoint gauge multiplets of U ( N a ) • stretched between two stacks a-stack in p dims in p ′ dims b-stack ⇒ bifundamentals of U ( N a ) × U ( N b ) in p ∩ p ′ dims

  6. Non oriented strings ⇒ orientifold planes where closed strings change orientation ⇒ mirror branes identified with branes under orientifold action • strings stretched between two mirror stacks X T a θ O Orientifold → X // X ⊥ → − X ⊥ a* ⇒ antisymmetric or symmetric of U ( N a )

  7. Minimal Standard Model embedding • oriented strings ⇒ need at least 4 brane-stacks • also for non-oriented strings with Baryon and Lepton number symmetries I.A.-Kiritsis-Tomaras ’00 I.A.-Kiritsis-Rizos-Tomaras ’02 • General analysis using 3 brane stacks ⇒ U (3) × U (2) × U (1) antiquarks u c , d c (¯ 3 , 1): antisymmetric of U (3) or bifundamental U (3) ↔ U (1) ⇒ 3 models: antisymmetric is u c , d c or none I.A.-Dimopoulos ’04

  8. U(3) U(2) U(3) U(3) U(2) U(2) Q Q Q c u c ν c ν c c d U(1) l U(1) U(1) c L L d u c L u c c d ν c c c l l Model A Model B Model C Q ( 3 , 2 ; 1 , 1 , 0) 1 / 6 ( 3 , 2 ; 1 , ε Q , 0) 1 / 6 ( 3 , 2 ; 1 , ε Q , 0) 1 / 6 u c (¯ (¯ (¯ 3 , 1 ; 2 , 0 , 0) − 2 / 3 3 , 1 ; − 1 , 0 , 1) − 2 / 3 3 , 1 ; − 1 , 0 , 1) − 2 / 3 d c (¯ (¯ (¯ 3 , 1 ; − 1 , 0 , ε d ) 1 / 3 3 , 1 ; 2 , 0 , 0) 1 / 3 3 , 1 ; − 1 , 0 , − 1) 1 / 3 L ( 1 , 2 ; 0 , − 1 , ε L ) − 1 / 2 ( 1 , 2 ; 0 , ε L , 1) − 1 / 2 ( 1 , 2 ; 0 , ε L , 1) − 1 / 2 l c ( 1 , 1 ; 0 , 2 , 0) 1 ( 1 , 1 ; 0 , 0 , − 2) 1 ( 1 , 1 ; 0 , 0 , − 2) 1 ν c ( 1 , 1 ; 0 , 0 , 2 ε ν ) 0 ( 1 , 1 ; 0 , 2 ε ν , 0) 0 ( 1 , 1 ; 0 , 2 ε ν , 0) 0 Y A = − 1 3 Q 3 + 1 1 6 Q 3 − 1 Y B,C = 2 Q 2 2 Q 1 1 � = 3 sin 2 θ W = Model A : � 2 + 2 α 2 / 3 α 3 8 � α 2 = α 3 1 � 6 sin 2 θ W = Model B , C : = � 1 + α 2 / 2 α 1 + α 2 / 6 α 3 7 + 3 α 2 /α 1 � α 2 = α 3

  9. • Higgs can be easily implemented massless ⇒ susy intersection H 1 , H 2 : U (2) ↔ U (1) like L Model B , C Model A H 1 ( 1 , 2 ; 0 , − 1 , ε H 1 ) − 1 / 2 ( 1 , 2 ; 0 , ε H 1 , 1) − 1 / 2 ( 1 , 2 ; 0 , 1 , ε H 2 ) 1 / 2 ( 1 , 2 ; 0 , ε H 2 , − 1) 1 / 2 H 2 • 2 extra U (1)’s - One combination can be B − L ( ε d = ε L = ε ν = − ε H 1 = ε H 2 ) 2 Q 2 − ε d B − L = − 1 6 Q 3 + 1 2 Q 1 broken by a SM singlet VEV at high scale or survive at low energies - The other/both is/are anomalous

  10. Moduli stabilization with 3-form fluxes: significant progress but - no exact string description low energy SUGRA approximation - fix only complex structure Type I with internal magnetic fluxes: alternative/complementary approach - exact string description - K¨ ahler class stabilization T 6 : all geometric moduli fixed - natural implementation in intersecting D-brane models

  11. Magnetic fluxes can be used to stabilize moduli I.A.-Maillard ’04, I.A.-Kumar-Maillard ’05, ’06 e.g. T 6 : 36 moduli (geometric deformations) internal metric: 6 × 7 / 2 = 21 = 9+2 × 6 type IIB RR 2-form: 6 × 5 / 2 = 15 = 9+2 × 3  K¨ ahler class J   complexification ⇒ complex structure τ   9 complex moduli for each magnetic flux: 6 × 6 antisymmetric matrix F complexification ⇒ F (2 , 0) on holomorphic 2-cycles: potential for τ F (1 , 1) on mixed (1,1)-cycles: potential for J

  12. T 6 parametrization/complexification x i ≡ x i + 1 y i ≡ y i + 1 i = 1 , 2 , 3 z i = x i + τ ij y i τ : 3 × 3 complex structure matrix δg i ¯ j : K¨ ahler deformations → J = δg i ¯ j idz i ∧ d ¯ z j W : covering map of the brane world-volume over T 6

  13. N = 1 SUSY conditions: 1. F (2 , 0) = 0 ⇒ τ τ T p xx τ − ( τ T p xy + p yx τ )+ p yy = 0 2. J ∧ J ∧ F (1 , 1) = F (1 , 1) ∧ F (1 , 1) ∧ F (1 , 1) ⇒ J 3. action positivity : det W ( J ∧ J ∧ J − J ∧ F ∧ F ) > 0 Appropriate choice of magnetic fluxes F a in several abelian directions U (1) a ⇒ all moduli vanish except the 6 radii of T 6 which are fixed in terms of the quantized fluxes T 6 = � 3 I =1 T 2 I ← orthogonal 2-torus I = F a τ I = R I J I = R I R ′ H a I R ′ I J I I (1) fixes the ratios τ I (2) fixes the sizes J I H 1 + H 2 + H 3 = H 1 H 2 H 3 ⇔ θ 1 + θ 2 + θ 3 = 0

  14. Main ingredients for moduli stabilization • “oblique” magnetic fields ⇒ fix off-diagonal components of the metric • Non linear DBI action ⇒ fix overall volume not valid in six dimensions • (2) ⇔ vanishing of a Fayet-Iliopoulos term ξ ∼ F ∧ F ∧ F − J ∧ J ∧ F Stabilization of RR moduli • K¨ ahler class: absorbed by massive U (1)’s kinetic mixing with magnetized U (1)’s ⇒ need at least 9 brane stacks • Complex structure: get potential through mixing with NS moduli Bianchi-Trevigne ‘05

  15. Tadpole conditions Q 9 = � a N a det W a = 16 ← O9 charge a N a det W a ǫ αβγδστ p a γδ p a Q 5 = � στ = 0 ∀ 2-cycle α, β = 1 , . . . , 6 SUSY + tadpole conditions seem incompatible - use 9 magnetized branes to fix all moduli impose SUSY conditions - introduce an extra brane(s) to satisfy RR tadpole cancellation ⇒ dilaton potential from the FI D-term ⇒ two possibilities:

  16. • keep SUSY by turning on charged scalar VEVs I.A.-Kumar-Maillard ’06 D-term condition (2) is modified to: qv 2 ( J ∧ J ∧ J − J ∧ F ∧ F ) = − ( F ∧ F ∧ F − F ∧ J ∧ J ) - EFT validity ⇒ v < 1 in string units - Infinite family of (large volume) solutions invariance: { F a , J } → { Λ F a , Λ J } for Λ ∈ N - fixing the dilaton? combine magnetic and 3-form fluxes 3-brane charge ⇒ T 6 / Z 2 with O3 planes • break SUSY in a AdS vacuum I.A.-Derendinger-Maillard in preparation add a ‘non-critical’ dilaton potential

  17. D-term SUSY breaking ⇒ problem with Majorana gaugino masses - lowest order: exact R-symmetry - higher orders: suppressed by the string scale I.A.-Taylor ’04, I.A.-Narain-Taylor ’05 However in toroidal models: - gauge multiplets have extended SUSY ⇒ Dirac gaugino masses without / R - non chiral intersections have N = 2 SUSY ⇒ Higgs in N = 2 hypermultiplet ⇒ New gauge mediation mechanism I.A.-Benakli-Delgado-Quiros ’07

  18. SM observable sector: SUSY gauginos: extended susy, Higgs hypermultiplet Hidden (secluded) sector: SUSY breaking messengers: N = 2 hypermultiplets with mixed quantum numbers • Dirac gaugino masses: ∼ α D 4 π M • Higgs potential: 8 ( g 2 + g ′ 2 )( | H 1 | 2 − | H 2 | 2 ) 2 V = V soft + 1 2 ( g 2 + g ′ 2 ) | H 1 H 2 | 2 + 1 ⇒ - lightest higgs h behaves as in SM - heaviest H plays no role in EWSB, g ZHH = 0 - same as MSSM in tan β → ∞ ⇒ “little” fine tuning is greatly reduced • Distinct collider signals different from MSSM

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend