micromorphic media
play

Micromorphic media Samuel Forest Mines ParisTech / CNRS Centre des - PowerPoint PPT Presentation

Micromorphic media Samuel Forest Mines ParisTech / CNRS Centre des Mat eriaux/UMR 7633 BP 87, 91003 Evry, France Samuel.Forest@mines-paristech.fr Plan Introduction 1 Mechanics of generalized continua Kinematics of micromorphic media


  1. Micromorphic media Samuel Forest Mines ParisTech / CNRS Centre des Mat´ eriaux/UMR 7633 BP 87, 91003 Evry, France Samuel.Forest@mines-paristech.fr

  2. Plan Introduction 1 Mechanics of generalized continua Kinematics of micromorphic media Method of virtual power 2 A hierarchy of higher order continua 3 Continuum thermodynamics and hyperelasticity 4 Linearization 5 Linearized strain measures Linear Cosserat elasticity Exercise 1 Elastoviscoplasticity of micromorphic media 6 Decomposition of strain measures Constitutive equations Elastoviscoplasticity of strain gradient media Exercise 2

  3. Notations Cartesian bases: reference basis ( E K ) K =1 , 2 , 3 , current basis ( e i ) i =1 , 2 , 3 A = A i e i , ∼ = A ij e i ⊗ e j , ∼ = A ∼ = A = A ijk e i ⊗ e j ⊗ e k , A A A ≈ s + A a symmetric and skew–symmetric parts A ∼ = A ∼ ∼ tensor products a ⊗ b = a i b j e i ⊗ e j , ∼ ⊗ B ∼ = A ij B kl e i ⊗ e j ⊗ e k ⊗ e l A A ∼ ⊠ B ∼ = A ik B jl e i ⊗ e j ⊗ e k ⊗ e l contractions . . A · B = A i B i , ∼ : B ∼ = A ij B ij , . B ∼ = A ijk B ijk A A ∼ nabla operators ∇ x = , i e i , ∇ X = , K E K u ⊗ ∇ X = u i , J e i ⊗ E J , ∼ · ∇ x = σ ij , j e i σ 3/68

  4. Notations Cartesian bases: reference basis ( E K ) K =1 , 2 , 3 , current basis ( e i ) i =1 , 2 , 3 A = A i e i , ∼ = A ij e i ⊗ e j , ∼ = A ∼ = A = A ijk e i ⊗ e j ⊗ e k , A A A ≈ s + A a symmetric and skew–symmetric parts A ∼ = A ∼ ∼ tensor products a ⊗ b = a i b j e i ⊗ e j , ∼ ⊗ B ∼ = A ij B kl e i ⊗ e j ⊗ e k ⊗ e l A A ∼ ⊠ B ∼ = A ik B jl e i ⊗ e j ⊗ e k ⊗ e l contractions . . A · B = A i B i , ∼ : B ∼ = A ij B ij , . B ∼ = A ijk B ijk A A ∼ nabla operators ∇ x = , i e i , ∇ X = , K E K u ⊗ ∇ X = u i , J e i ⊗ E J , ∼ · ∇ x = σ ij , j e i σ 3/68

  5. Notations Cartesian bases: reference basis ( E K ) K =1 , 2 , 3 , current basis ( e i ) i =1 , 2 , 3 A = A i e i , ∼ = A ij e i ⊗ e j , ∼ = A ∼ = A = A ijk e i ⊗ e j ⊗ e k , A A A ≈ s + A a symmetric and skew–symmetric parts A ∼ = A ∼ ∼ tensor products a ⊗ b = a i b j e i ⊗ e j , ∼ ⊗ B ∼ = A ij B kl e i ⊗ e j ⊗ e k ⊗ e l A A ∼ ⊠ B ∼ = A ik B jl e i ⊗ e j ⊗ e k ⊗ e l contractions . . A · B = A i B i , ∼ : B ∼ = A ij B ij , . B ∼ = A ijk B ijk A A ∼ nabla operators ∇ x = , i e i , ∇ X = , K E K u ⊗ ∇ X = u i , J e i ⊗ E J , ∼ · ∇ x = σ ij , j e i σ 3/68

  6. Notations Cartesian bases: reference basis ( E K ) K =1 , 2 , 3 , current basis ( e i ) i =1 , 2 , 3 A = A i e i , ∼ = A ij e i ⊗ e j , ∼ = A ∼ = A = A ijk e i ⊗ e j ⊗ e k , A A A ≈ s + A a symmetric and skew–symmetric parts A ∼ = A ∼ ∼ tensor products a ⊗ b = a i b j e i ⊗ e j , ∼ ⊗ B ∼ = A ij B kl e i ⊗ e j ⊗ e k ⊗ e l A A ∼ ⊠ B ∼ = A ik B jl e i ⊗ e j ⊗ e k ⊗ e l contractions . . A · B = A i B i , ∼ : B ∼ = A ij B ij , . B ∼ = A ijk B ijk A A ∼ nabla operators ∇ x = , i e i , ∇ X = , K E K u ⊗ ∇ X = u i , J e i ⊗ E J , ∼ · ∇ x = σ ij , j e i σ 3/68

  7. Notations Cartesian bases: reference basis ( E K ) K =1 , 2 , 3 , current basis ( e i ) i =1 , 2 , 3 A = A i e i , ∼ = A ij e i ⊗ e j , ∼ = A ∼ = A = A ijk e i ⊗ e j ⊗ e k , A A A ≈ s + A a symmetric and skew–symmetric parts A ∼ = A ∼ ∼ tensor products a ⊗ b = a i b j e i ⊗ e j , ∼ ⊗ B ∼ = A ij B kl e i ⊗ e j ⊗ e k ⊗ e l A A ∼ ⊠ B ∼ = A ik B jl e i ⊗ e j ⊗ e k ⊗ e l contractions . . A · B = A i B i , ∼ : B ∼ = A ij B ij , . B ∼ = A ijk B ijk A A ∼ nabla operators ∇ x = , i e i , ∇ X = , K E K u ⊗ ∇ X = u i , J e i ⊗ E J , ∼ · ∇ x = σ ij , j e i σ 3/68

  8. Plan Introduction 1 Mechanics of generalized continua Kinematics of micromorphic media Method of virtual power 2 A hierarchy of higher order continua 3 Continuum thermodynamics and hyperelasticity 4 Linearization 5 Linearized strain measures Linear Cosserat elasticity Exercise 1 Elastoviscoplasticity of micromorphic media 6 Decomposition of strain measures Constitutive equations Elastoviscoplasticity of strain gradient media Exercise 2

  9. Plan Introduction 1 Mechanics of generalized continua Kinematics of micromorphic media Method of virtual power 2 A hierarchy of higher order continua 3 Continuum thermodynamics and hyperelasticity 4 Linearization 5 Linearized strain measures Linear Cosserat elasticity Exercise 1 Elastoviscoplasticity of micromorphic media 6 Decomposition of strain measures Constitutive equations Elastoviscoplasticity of strain gradient media Exercise 2

  10. Mechanics of generalized continua Principle of local action: the stress state at a point X depends on variables defined at this point only [Truesdell, Toupin, 1960] [Truesdell, Noll, 1965] local action Continuous Medium nonlocal nonlocal theory: integral formulation [Eringen, 1972] action Introduction 6/68

  11. Mechanics of generalized continua Simple material: A material is simple at the particle X if and only if its response to deformations homogeneous in a neighborhood of X determines uniquely its response to every deformation at X . [Truesdell, Toupin, 1960] [Truesdell, Noll, 1965] simple Cauchy medium (1823) material F (classical / Boltzmann) ∼ local action non simple Continuous material Medium nonlocal nonlocal theory: integral formulation [Eringen, 1972] action Introduction 7/68

  12. Mechanics of generalized continua Simple material: A material is simple at the particle X if and only if its response to deformations homogeneous in a neighborhood of X determines uniquely its response to every deformation at X . [Truesdell, Toupin, 1960] [Truesdell, Noll, 1965] simple Cauchy continuum (1823) material F (classical / Boltzmann) ∼ Cosserat (1909) u , R local medium ∼ of order n micromorphic action [Eringen, Mindlin 1964] non simple u , χ Continuous material ∼ second gradient [Mindlin, 1965] medium ∼ ⊗ ∇ F ∼ , F of grade n Medium gradient of internal variable [Maugin, 1990] u , α nonlocal nonlocal theory: integral formulation [Eringen, 1972] action Introduction 8/68

  13. Plan Introduction 1 Mechanics of generalized continua Kinematics of micromorphic media Method of virtual power 2 A hierarchy of higher order continua 3 Continuum thermodynamics and hyperelasticity 4 Linearization 5 Linearized strain measures Linear Cosserat elasticity Exercise 1 Elastoviscoplasticity of micromorphic media 6 Decomposition of strain measures Constitutive equations Elastoviscoplasticity of strain gradient media Exercise 2

  14. Kinematics of micromorphic media • Degrees of freedom of the theory DOF := { u , χ } ∼ ⋆ displacement u ( X , t ) and microdeformation χ ∼ ( X , t ) of the material point X ⋆ current position of the material point x = Φ( X , t ) = X + u ( X , t ) ⋆ deformation of a triad of directors attached to the material ξ i ( X ) = χ ∼ ( X ) · Ξ i point • Polar decomposition of the generally incompatible microdeformation field χ ∼ ( X , t ) ♯ · U ♯ χ ∼ = R ∼ ∼ internal constraints ♯ ⋆ Cosserat medium ∼ ≡ R χ ∼ ♯ ⋆ Microstrain medium ∼ ≡ U χ ∼ ⋆ Second gradient medium ∼ ≡ F χ ∼ Introduction 10/68

  15. Kinematics of micromorphic media • Degrees of freedom of the theory DOF := { u , χ } ∼ ⋆ displacement u ( X , t ) and microdeformation χ ∼ ( X , t ) of the material point X ⋆ current position of the material point x = Φ( X , t ) = X + u ( X , t ) ⋆ deformation of a triad of directors attached to the material ξ i ( X ) = χ ∼ ( X ) · Ξ i point • Polar decomposition of the generally incompatible microdeformation field χ ∼ ( X , t ) ♯ · U ♯ χ ∼ = R ∼ ∼ internal constraints ♯ ⋆ Cosserat medium ∼ ≡ R χ ∼ ♯ ⋆ Microstrain medium ∼ ≡ U χ ∼ ⋆ Second gradient medium ∼ ≡ F χ ∼ Introduction 10/68

  16. Directors in materials tri` edre directeur in a single crystal: 3 lattice vectors “Les directeurs ne subissent pas la mˆ eme transformation que les lignes mat´ erielles. C’est en cela que le milieu plastique diff` ere du milieu continu classique. On doit le concevoir un peu comme un milieu de Cosserat.” [Mandel, 1973] Introduction 11/68

  17. Kinematics of micromorphic media u (Φ − 1 ( x , t ) , t ) • velocity field v ( x , t ) := ˙ • deformation gradient ∼ = 1 ∼ + u ⊗ ∇ X F v ⊗ ∇ x = ˙ − 1 • velocity gradient F ∼ · F ∼ − 1 • microdeformation rate ∼ · χ χ ˙ ∼ − 1 · χ • Lagrangian microdeformation gradient ∼ := χ ∼ ⊗ ∇ X K ∼ • gradient of the microdeformation rate tensor − 1 ⊠ F − 1 ) ⊗ ∇ x = χ ∼ · ˙ − 1 ) ( ˙ ∼ · χ ∼ : ( χ χ K ∼ ∼ ∼ Lj ) , k = χ iP ˙ χ iL χ − 1 K PQR χ − 1 Qj F − 1 ( ˙ Rk [Eringen, 1999] Introduction 12/68

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend