mesa mainz energy recovery superconducing acclerator
play

MESA - Mainz Energy Recovery Superconducing Acclerator - PowerPoint PPT Presentation

E XPERIMENTS WITH I NTERNAL T ARGETS AT THE M AINZ E NERGY -R ECOVERING S UPERCONDUCTING A CCELERATOR Harald Merkel Johannes Gutenberg-Universit at Mainz 54 th International Winter Meeting on Nuclear Physics Bormio (Italy), January 27 th, 2016


  1. E XPERIMENTS WITH I NTERNAL T ARGETS AT THE M AINZ E NERGY -R ECOVERING S UPERCONDUCTING A CCELERATOR Harald Merkel Johannes Gutenberg-Universit¨ at Mainz 54 th International Winter Meeting on Nuclear Physics Bormio (Italy), January 27 th, 2016 The MESA Accelerator MAGIX High resolution magnetic spectrometers Internal targets: Gas Jet Target or Polarized Target Physics program Magnetic radius of the proton Astropyhsical S-Factor Few body physics Search for exotic particles Summary

  2. MESA - Mainz Energy Recovery Superconducing Acclerator Super-conducting, recirculating LINAC Energy of up to 155 MeV Operation for external targets, 1 mA, polarized beam Operation in ENERGY RECOVERY MODE (up to 105 MeV) Recirculating with λ / 2 phase shift in last return path Deceleration in cavities recovers energy from the beam ⇒ High beam current (up to 10 mA) Large fraction of the beam can be used for an INTERNAL TARGET ...funded, under construction! Harald Merkel, Bormio 2016 2/19

  3. Magix - Design Considerations Using the full power of the MESA beam quality Beam intensity ⇒ High count rate capability (MHz) Nuclear Physics: Separate energy levels at 100 MeV at 100keV distance ⇒ momentum resolution δ p p < 10 − 4 Precision measurement of electron scattering cross sections proportional to Mott cross section d σ d Ω ≈ 1 1 Q 4 ≈ sin 4 θ / 2 ⇒ angular resolution δθ < 0 . 05 ◦ Low energetic particles ( e , p , below π threshold) Negligible energy loss in window-less gas target Vacuum until first detector layer Excellent position detection in first layer, modest angular detection later ⇒ Focussing spectrometers Harald Merkel, Bormio 2016 3/19

  4. Magix - Optics 2500 3500 B [T] 2000 0.7 0.525 3000 0.35 0.175 2500 1500 0 path length off central beam [mm] x [mm] 2000 1000 1500 1000 500 500 0 0 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 y [mm] 0 500 1000 1500 2000 2500 z [mm] scale 1:180 Harald Merkel, Bormio 2016 4/19

  5. Magix Harald Merkel, Bormio 2016 5/19

  6. Magix - Targets 1. Polarized Target Polarized Hydrogen target Flow is limited by polarizator (Laser driven/Atomic beam) Polarized Gas L = 2 × 10 31 s − 1 cm − 2 Luminosities of up to | � P e | ≈ 80% Polarization Beam T arget cell 2. Gas Jet Target Hypersonic gas jet by Laval nozzle Gas jet caught mbar → 10 − 11 mbar Expensive part: Pumping system Beam quality: narrow flow delimiters L = 10 36 s − 1 cm − 2 Luminosities of up to at 10 mA Harald Merkel, Bormio 2016 6/19

  7. Physics Program at Magix Physics Program to employ the strenghtes of MESA and Magix High beam intensity ↔ low target density Excellent beam quality ⇒ Precision physics High degree of beam/target polarization Tuneable to very low energies Selected Examples: Magnetic Radius Tests of ab-initio Calulations in Few-Body Physics Astrophysical S-Factors Search for exotic particles: Search for Dark Photons Invisible Decay of Dark Photons Dark matter beam Harald Merkel, Bormio 2016 7/19

  8. Magnetic Radius of the Proton Magnetic Radius from limit Q 2 → 0 Suppressed by τ = Q 2 p in cross section 4 m 2 � d σ � d σ 1 ε G 2 E ( Q 2 )+ τ G 2 M ( Q 2 ) � � = d Ω e d Ω e ε ( 1 + τ ) Mott p p | > 300 MeV Beam-Recoil polarization is limited by proton recoil momentum | � c Beam-Target polarization: A ( θ ∗ , φ ∗ ) = A I sin θ ∗ cos φ ∗ + A S cos θ ∗ τ ( 1 + τ ) tan θ G E G M � A I = − 2 τ + 2 τ ( 1 + τ ) tan 2 θ � � G 2 G 2 2 E + M 2 � G 2 1 + τ +( 1 + τ ) 2 tan 2 θ 2 tan θ M A S = − 2 τ τ + 2 τ ( 1 + τ ) tan 2 θ G 2 � � G 2 2 E + M 2 φ ∗ = 0 � A ⊥ = A l ∼ G E ⇒ θ ∗ = 0 , π A s G M 2 Harald Merkel, Bormio 2016 8/19

  9. Magnetic Radius of the Proton - Asymmtry 0 Beam Energy E = 100 MeV 0 Beam polarization P = 80% beam -10 Target polarization P = 75% T Time per setting t = 10d 31 [%] -1 -2 -20 Luminosity L= 2 10 s cm × Asymmetry A -30 Asymmetry (Calc) -40 o Setting = 42.0 θ e o Setting = 61.8 θ e -50 o Setting = 79.3 θ e o Setting = 96.9 θ e o Setting = 116.2 -60 θ e o Setting = 141.8 θ e -70 -0.03 -0.025 -0.02 -0.015 -0.01 -0.005 2 2 2 Photon Virtuality q [GeV /c ] (Conservative) assumptions for target ≈ Blast target Statistical error only (systematic error should be small!) Harald Merkel, Bormio 2016 9/19

  10. Magnetic Radius of the Proton - Errors 1.1 1 – Bernauer (MAMI 2010) 0.9 M Zhan (JLab 2011) E /G p Crawford (Bates 2007) MacLachlan (JLab 2006) µ p G p Jones (JLab 2006) Punjabi (JLab 2005) 0.8 Pospischil (MAMI 2001) Dietrich (MAMI 2001) Gayou (JLab 2001) Jones (JLab 2000) MESA projected error 0.7 — Belushkin (Disp. Analysis 2007) 0.6 0.01 0.1 1 10 Q 2 / (GeV 2 /c 2 ) Harald Merkel, Bormio 2016 10/19

  11. Tests of ab-initio Calulations in Few-Body Physics Ab initio calculations e.g. with Effective Field Theory Consistent chiral expansion of elementary NN-interaction Consistent expansion of Few-Body-Systems Very promising, but How can we test this? Harald Merkel, Bormio 2016 11/19

  12. How can we test Ab-Initio-Calculations? Challenge for theory: Reaction dynamics Possible solution: Use EFT input for potentials Faddeev Calculations for dynamics (J. Golak, H. Witała, ...) Prediction of dynamic observables Promising: Polarization observables Challenge for experiments: Low Momentum Region Needed: High resolution (separate excited states!) Low momentum (use gas targets!) High luminosity (in spite of gas target!) High degrees of beam and target polarization (in spite of high luminosity!) ⇒ Magix @ MESA Harald Merkel, Bormio 2016 12/19

  13. Astrophysical S-Factor for α ( 12 C , 16 O ) γ σ ≈ 10 − 17 barn ← He-Burning How to overcome limits: 1. Timereversal (enhancement by factor 10 due to spin weight): γ + 16 O → 12 C + α 2. Covering the Threshold: Electroproduction in limit Q 2 → 0 e + 16 O → e ′ + 12 C + α γ ∗ + 16 O → 12 C + α ⇔ Electron has large momentum, but virtual photon energy goes to zero! 3. Detection of slow recoil α ⇒ gas target, recoil detector Harald Merkel, Bormio 2016 13/19

  14. Search for exotic particles: Dark Photons (a) (b) γ' γ' e − e − e − e − Z Z Z Z Dark photon: Force carrier of the Dark Sector Radiative production e + Z → e + Z + γ ′ → e + + e − (detected in Magix) -2 10 KLOE 2014 KLOE 2013 ε B A B AR (g-2) 2009 WASA e APEX ± σ HADES (g-2) 2 µ B A B AR PHENIX A1 favored 2014 NA48/2 -3 10 E774 E141 -4 10 MESA -2 -1 10 10 2 m [GeV/c ] γ ' Harald Merkel, Bormio 2016 14/19

  15. Beam-Dump Experiments: Motivation SuperCDMS Soudan CDMS-lite SuperCDMS Soudan Low Threshold XENON 10 S2 (2013) 10 � 39 CDMS-II Ge Low Threshold (2011) 10 � 3 CoGeNT PICO250-C3F8 (2012) 10 � 40 10 � 4 CDMS Si (2013) SIMPLE (2012) 10 � 41 10 � 5 WIMP � nucleon cross section � cm 2 � ) 2 1 0 WIMP � nucleon cross section � pb � 2 DAMA ( P P U ZEPLIN-III (2012) O C 10 � 42 CRESST 10 � 6 ) 9 0 0 2 ( e SuperCDMS G I I S SuperCDMS Soudan M D C 1 ) 0 1 2 S ( 10 � 43 S 10 � 7 E I W E L D E 2 ) 1 0 SNOLAB 2 ( 0 DarkSide 50 0 N 1 n E U o n e X T 10 � 44 R 10 � 8 I N LUX O PICO250-CF3I 7 Be C T C A T E O H S R E E N T R Neutrinos I N G 8 B 10 � 9 10 � 45 Xenon1T Neutrinos DEAP3600 DarkSide G2 10 � 46 10 � 10 Z L 10 � 47 10 � 11 (Green&ovals)&Asymmetric&DM&& (Violet&oval)&Magne7c&DM& G I N R E T T A (Blue&oval)&Extra&dimensions&& C S s 10 � 48 R E N T o 10 � 12 n i r H E u t e N (Red&circle)&SUSY&MSSM& O C B O N S I N R D T U d E n &&&&&MSSM:&Pure&Higgsino&& N a c r i e h p s 10 � 49 o 10 � 13 m &&&&&MSSM:&A&funnel& A t &&&&&MSSM:&BinoEstop&coannihila7on& &&&&&MSSM:&BinoEsquark&coannihila7on& 10 � 50 10 � 14 & 1 10 100 1000 10 4 WIMP Mass � GeV � c 2 � Direct detection experiments: No clear signal yet Limit of sensitivity (solar ν background) will be reached soon Lower masses ( i.e. low recoil energy) not accessible P . Cushman, et al. , arXiv:1310.8327 Harald Merkel, Bormio 2016 15/19

  16. Beam-Dump Experiments: Idea 10 m 10 m Dirt e − χ Beam Dump Detector Production in beam dump, e.g. via pair production e − χ e − A 0 χ Z We now have a Dark Matter Beam! Dark Matter particles have enough recoil energy! Detection with simple detector, e.g. scintillator cube ... or with sophisticated DM Detector ... Harald Merkel, Bormio 2016 16/19

  17. FLUKA Simulation Neutrons can be shielded Below pion threshold: negligible ν background Clean conditions, detailed layout of hall needed for further design Harald Merkel, Bormio 2016 17/19

  18. Magix Sensitivity Reasonable sensitivity for low mass region Multidimensional plot: Assumptions for dark photon mass, m χ Calculations: G. Krnjaic Harald Merkel, Bormio 2016 18/19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend