mean field limits for ginzburg landau vortices
play

Mean Field Limits for Ginzburg-Landau Vortices Sylvia Serfaty - PowerPoint PPT Presentation

Mean Field Limits for Ginzburg-Landau Vortices Sylvia Serfaty Universit P. et M. Curie Paris 6, Laboratoire Jacques-Louis Lions & Institut Universitaire de France Jean-Michel Corons 60th birthday, June 20, 2016 The Ginzburg-Landau


  1. Mean Field Limits for Ginzburg-Landau Vortices Sylvia Serfaty Université P. et M. Curie Paris 6, Laboratoire Jacques-Louis Lions & Institut Universitaire de France Jean-Michel Coron’s 60th birthday, June 20, 2016

  2. The Ginzburg-Landau equations u : Ω ⊂ R 2 → C − ∆ u = u ε 2 ( 1 − | u | 2 ) Ginzburg-Landau equation (GL) ∂ t u = ∆ u + u ε 2 ( 1 − | u | 2 ) parabolic GL equation (PGL) i ∂ t u = ∆ u + u ε 2 ( 1 − | u | 2 ) Gross-Pitaevskii equation (GP) Associated energy � |∇ u | 2 + ( 1 − | u | 2 ) 2 E ε ( u ) = 1 2 2 ε 2 Ω Models: superconductivity, superfluidity, Bose-Einstein condensates, nonlinear optics

  3. Vortices ◮ in general | u | ≤ 1, | u | ≃ 1 = superconducting/superfluid phase, | u | ≃ 0 = normal phase ◮ u has zeroes with nonzero degrees = vortices ◮ u = ρ e i ϕ , characteristic length scale of { ρ < 1 } is ε = vortex core size ◮ degree of the vortex at x 0 : � 1 ∂ϕ ∂τ = d ∈ Z 2 π ∂ B ( x 0 , r ) ◮ In the limit ε → 0 vortices become points , (or curves in dimension 3).

  4. Solutions of (GL), bounded number N of vortices ◮ minimal energy min E ε = π N | log ε | + min W + o ( 1 ) as ε → 0 ◮ u ε minimizing E ε has vortices all of degree + 1 (or all − 1) which converge to a minimizer of � W (( x 1 , d 1 ) , . . . , ( x N , d N )) = − π d i d j log | x i − x j | + boundary terms... i � = j “renormalized energy" , Kirchhoff-Onsager energy (in the whole plane) [Bethuel-Brezis-Hélein ’94] ◮ Some boundary condition needed to obtain nontrivial minimizers ◮ nonminimizing solutions: u ε has vortices which converge to a critical point of W : ∇ i W ( { x i } ) = 0 ∀ i = 1 , · · · N [Bethuel-Brezis-Hélein ’94] ◮ stable solutions converge to stable critical points of W [S. ’05]

  5. Solutions of (GL), bounded number N of vortices ◮ minimal energy min E ε = π N | log ε | + min W + o ( 1 ) as ε → 0 ◮ u ε minimizing E ε has vortices all of degree + 1 (or all − 1) which converge to a minimizer of � W (( x 1 , d 1 ) , . . . , ( x N , d N )) = − π d i d j log | x i − x j | + boundary terms... i � = j “renormalized energy" , Kirchhoff-Onsager energy (in the whole plane) [Bethuel-Brezis-Hélein ’94] ◮ Some boundary condition needed to obtain nontrivial minimizers ◮ nonminimizing solutions: u ε has vortices which converge to a critical point of W : ∇ i W ( { x i } ) = 0 ∀ i = 1 , · · · N [Bethuel-Brezis-Hélein ’94] ◮ stable solutions converge to stable critical points of W [S. ’05]

  6. Dynamics, bounded number N of vortices ◮ For well-prepared initial data, d i = ± 1, solutions to (PGL) have vortices which converge (after some time-rescaling) to solutions to dx i dt = −∇ i W ( x 1 , . . . , x N ) [Lin ’96, Jerrard-Soner ’98, Lin-Xin ’99, Spirn ’02, Sandier-S ’04] ◮ For well-prepared initial data, d i = ± 1, solutions to (GP) dx i ∇ ⊥ = ( − ∂ 2 , ∂ 1 ) dt = −∇ ⊥ i W ( x 1 , . . . , x N ) [Colliander-Jerrard ’98, Spirn ’03, Bethuel-Jerrard-Smets ’08] ◮ All these hold up to collision time ◮ For (PGL), extensions beyond collision time and for ill-prepared data [Bethuel-Orlandi-Smets ’05-07, S. ’07]

  7. A word about dimension 3 (or higher) ◮ Leading order of the energy becomes π | d | L | log ε | where L = length (or area) of vortex line (integer multiplicity rectifiable current) ◮ Minimizers/solutions to (GL) converge to length minimizing / stationary currents (= straight lines) [Rivière ’95, Lin-Rivière ’01, Sandier ’01, Bethuel-Brezis-Orlandi ’01, Jerrard-Soner ’02, Alberti-Baldo-Orlandi ’03, Bourgain-Brezis-Mironescu ’04] ◮ (PGL) → mean curvature motion (Brakke) [Bethuel-Orlandi-Smets ’06] ◮ (GP) → binormal flow (partial results) [Jerrard ’02]

  8. Vorticity ◮ In the case N ε → ∞ , describe the vortices via the vorticity : supercurrent � a , b � := 1 2 ( a ¯ j ε := � iu ε , ∇ u ε � b + ¯ ab ) vorticity µ ε := curl j ε ◮ ≃ vorticity in fluids, but quantized: µ ε ≃ 2 π � i d i δ a ε i µ ε 2 π N ε → µ signed measure, or probability measure, ◮

  9. Mean-field limit for stationary solutions If u ε is a solution to (GL) and N ε ≫ 1 then µ ε / N ε → µ solution to h = − ∆ − 1 µ µ ∇ h = 0 in a suitable weak sense ( ≃ Delort): T µ := −∇ h ⊗ ∇ h + 1 2 |∇ h | 2 δ j i Weak relation is div T µ = 0 in “finite parts" [Sandier-S ’04] � h is constant on the support of µ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ����� ����� ������������ ������������ ����� ����� ������������ ������������ ������������ ������������ ����� ����� ����� ����� ������������ ������������ ����� ����� ������������ ������������ ����� ����� c 1 ������������ ������������ c 2 ����� ����� ������������ ������������ ����� ����� ������������ ������������ ����� ����� ������������ ������������ ������������ ������������ ����� ����� ������������ ������������ ����� ����� ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ ������������ Ω

  10. Dynamics in the case N ε ≫ 1 Back to | log ε | ∂ t u = ∆ u + u N ε ε 2 ( 1 − | u | 2 ) in R 2 (PGL) iN ε ∂ t u = ∆ u + u ε 2 ( 1 − | u | 2 ) in R 2 (GP) ◮ For (GP), by Madelung transform, the limit dynamics is expected to be the 2D incompressible Euler equation. Vorticity form ∂ t µ − div ( µ ∇ ⊥ h ) = 0 h = − ∆ − 1 µ (EV) ◮ For (PGL), formal model proposed by [Chapman-Rubinstein-Schatzman ’96], [E ’95]: if µ ≥ 0 h = − ∆ − 1 µ ∂ t µ − div ( µ ∇ h ) = 0 (CRSE)

  11. Dynamics in the case N ε ≫ 1 Back to | log ε | ∂ t u = ∆ u + u N ε ε 2 ( 1 − | u | 2 ) in R 2 (PGL) iN ε ∂ t u = ∆ u + u ε 2 ( 1 − | u | 2 ) in R 2 (GP) ◮ For (GP), by Madelung transform, the limit dynamics is expected to be the 2D incompressible Euler equation. Vorticity form ∂ t µ − div ( µ ∇ ⊥ h ) = 0 h = − ∆ − 1 µ (EV) ◮ For (PGL), formal model proposed by [Chapman-Rubinstein-Schatzman ’96], [E ’95]: if µ ≥ 0 h = − ∆ − 1 µ ∂ t µ − div ( µ ∇ h ) = 0 (CRSE)

  12. Study of the Chapman-Rubinstein-Schatzman-E equation ◮ [Lin-Zhang ’00, Du-Zhang ’03, Masmoudi-Zhang ’05] existence of weak solutions (à la Delort) by vortex approximation method, existence and uniqueness of L ∞ solutions, which decay in 1 / t (uses pseudo-differential operators) ◮ [Ambrosio-S ’08] variational approach in the setting of a bounded domain. The equation is formally the gradient flow of � Ω |∇ ∆ − 1 µ | 2 for the 2-Wasserstein metric (à la [Otto, F ( µ ) = 1 2 Ambrosio-Gigli-Savaré]). ◮ [S-Vazquez ’13] PDE approach in all dimension. Existence via limits in fractional diffusion ∂ t µ + div ( µ ∇ ∆ − s µ ) when s → 1, uniqueness in the class L ∞ , propagation of regularity, asymptotic self-similar profile µ ( t ) = 1 π t 1 B √ t

  13. Study of the Chapman-Rubinstein-Schatzman-E equation ◮ [Lin-Zhang ’00, Du-Zhang ’03, Masmoudi-Zhang ’05] existence of weak solutions (à la Delort) by vortex approximation method, existence and uniqueness of L ∞ solutions, which decay in 1 / t (uses pseudo-differential operators) ◮ [Ambrosio-S ’08] variational approach in the setting of a bounded domain. The equation is formally the gradient flow of � Ω |∇ ∆ − 1 µ | 2 for the 2-Wasserstein metric (à la [Otto, F ( µ ) = 1 2 Ambrosio-Gigli-Savaré]). ◮ [S-Vazquez ’13] PDE approach in all dimension. Existence via limits in fractional diffusion ∂ t µ + div ( µ ∇ ∆ − s µ ) when s → 1, uniqueness in the class L ∞ , propagation of regularity, asymptotic self-similar profile µ ( t ) = 1 π t 1 B √ t

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend