a lattice study of n 2 landau ginzburg model using a
play

A lattice study of N =2 Landau-Ginzburg model using a Nicolai map - PowerPoint PPT Presentation

a A lattice study of N =2 Landau-Ginzburg model using a Nicolai map based on arXiv:1005.4671 Hiroki Kawai (in collaboration with Y.Kikukawa) Institute of Physics, The University of Tokyo 1 Purposeg 2d N =2 Landau-Ginzburg model (LG model) (


  1. a A lattice study of N =2 Landau-Ginzburg model using a Nicolai map based on arXiv:1005.4671 Hiroki Kawai (in collaboration with Y.Kikukawa) Institute of Physics, The University of Tokyo

  2. 1 Purposeg 2d N =2 Landau-Ginzburg model (LG model) ( ∫ ) ∫ d 2 xd 4 θ K (Φ , ¯ d 2 xd 2 θ W (Φ) + c.c. S = Φ) + Φ … chiral superfield At the IR fixed point, W (Φ) = λ Φ k is believed to describe... ✕ ✁ { N = 2 minimal model ← check for K (Φ , ¯ Φ) = ¯ ΦΦ (WZ model) ✁ → Gepner model (compactified string), ... ֒ λ eff → ∞ , lattice ! Why it is believed that LG models describe CFTs ? ● 2d bosonic case ’86 A.B.Zamolodchikov … φ 2 p − 3 6 (2 , 2) ∝ ∂ 2 φ (2 , 2) In the c = 1 − p ( p +1) minimal model, the fusion rule implies … φ 2 p − 3 ∝ ∂ 2 φ In the 2d bosonic LG model L = 1 2 ∂ µ φ∂ µ φ + gφ 2 p − 2 , EOM is conjecture ⇒ φ = φ (2 , 2) at the IR fixed point. ⇒ Extending this idea, ...

  3. How to check the conjecture ● early studies → ’89 Kastor, Martinec and Shenker RG flow of c -functions → ’89 Vafa and Warner → For W (Φ) = λ Φ k , catastrophe theory  → ’89 Howe and West c = 3(1 − 2 ϵ -expansion k )    → ’93 Witten Φ : ( h, ¯  h ) = ( 1 2 k , 1 elliptic genus, SCA 2 k )    Φ 2 : ( h, ¯ h ) = ( 2 2 k , 2 2 k ) ...  :     Φ k − 2 : ( h, ¯  h ) = ( k − 2 2 k , k − 2 2 k )  ● We computed correlation functions non-perturbatively for W (Φ) ∝ Φ 3 . susceptibility of CFT: ∫ ∫ 1 finite volume h ∝ V 1 − h − ¯ d 2 x 〈 φ ( x ) φ ∗ (0) 〉 d 2 x h χ ≡ − → | x | 2 h +2¯ V ⇒ log χ = (1 − h − ¯ h ) log V + const. ✁ ✕ ✁ ✁ 6 = 0.666... For the present W (Φ) ∝ Φ 3 , 1 − h − ¯ h = 1 − 1 6 − 1

  4. 2 Lattice Formulation of WZ modelg lattice action: ’83 Sakai and Sakamoto ’02 Catterall and Karamov ’02 Kikukawa and Nakayama φ ∗ Tφ + W ∗ (1 − a 2 ’09,’10 Kadoh and Suzuki,.. ∑ { ( ) W ′ ( − S 1 + iS 2 ) φ + c.c. S = 4 T ) W + ( + 1 − γ 3 W ′′∗ 1 − ˆ ) } D + 1 + γ 3 W ′′ 1 + ˆ γ 3 γ 3 + ¯ ψ ψ 2 2 2 2 D = 1 [ ] X W = λ 3 Φ 3 √ where 1 + = T + γ 1 S 1 + γ 2 S 2 , E 1 2 X † X ✻ a enough λ { modes ! continuum limit : aλ → 0 ✏ ✶ ✏ ● λ is the unique mass parameter (besides a ) ⇒ To see CFT, L ≫ ( aλ ) − 1 is needed. 0 { ◎ one SUSY Q ● no extra fine-tunings ⇐ ◎ Z 3 R-symmetry ← overlap fermion ● This lattice model faces the sign problem | D + F | is real, but can be negative. ⇐ γ 1 ( D + F ) γ 1 = ( D + F ) ∗

  5. 3 Simulationg We utilized the Nicolai map : η = W ′ + ( φ − a 2 W ′ ) T + ( φ ∗ − a g 2 W ∗′ )( S 1 + iS 2 ) . 〈O〉 = 〈 ∑ N ( η ) i =1 O ( φ i ) sgn | D + F ( φ i ) |〉 η 〈 ∑ N ( η ) a → 0 i =1 sgn | D + F ( φ i ) |〉 η → Witten index ∆ = 2 (cubic potential) x | η | 2  η X e − P R D η D ¯ 〈 X 〉 η ≡  x | η | 2 η e − P R  D η D ¯ where  N ( η ) counts the solutions of the Nicolai map φ 1 , .., φ N ( η )  1. Assigning { η , η ∗ } as the standard normal distribution, 2. Solving the Nicolai map by the Newton-Raphson algorithm, 3. Sample the configurations of { φ , φ ∗ } . … no autocorrelation ● advantage … N ( η ) ● difficulty

  6. Susceptibility: χ φ ≡ ∑ x ≥ 3 〈 φ ( x ) φ (0) 〉 W (Φ) = λ 3 Φ 3 , aλ = 0 . 3 , L = 18 , 20 , .., 32 (Newton iter. from 100 initial config. for each noise) × 320 noises 4.8 linear fit by least-square-method 4.5 ❅ ❅ ❅ ❘ ln χ φ 4.2 3.9 6 6.5 7 ln L 2 ⇒ χ φ ∝ V 0.660 ± 0.011 ⇒ consistent with the conjecture χ φ ∝ V 0.666... ◎

  7. 4 Summary and future plan Summary ∫ V d x 2 〈 φ ( x ) φ ∗ (0) 〉 in the cubic potential case, and got the consistent result • We observed χ = with the conjecture χ ∼ V 0 . 660 ± 0 . 011 . • We also extracted the effective coupling constant K of the Gaussian model, and obtained 3 K = 0 . 242 ± 0 . 010 which is consistent with the N = 2 SUSY point K = 4 π = 0 . 238 .. . This implies the restoration of all supersymmetries in the IR. (see more detail in arXiv:1005.4671) Future Plan • further check of the A-D-E classification: → A 3 model ? Φ 4 W = Φ 3 + Φ ′ 4 → E 6 = A 2 ⊗ A 3 model ? Φ 3 + ΦΦ ′ 2 → D 4 model ? • c-function → central charge, c-theorem • 2d N = 1 LG model with W ∝ Φ 3 ( infrared → tricritical ising model) ⇒ dynamical SUSY breaking

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend